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Abstract: The most recent tendencies in pavement engineering design are directed to the return of the use of fundamental mechanical
principles of engineering to predict design life through the concept of damage. Damage is associated with the relation between (1) the
number of repetitions a material can resist until failure and (2) the predicted repetitions the designer is expecting during a period of time.
Generally, mechanical responses as strains, stresses, and displacements are used to calculate the number of repetitions until a specific failure.
In rigid pavements, there are analytical solutions that range from simple Westergaard’s closed-form formulas to complex numerical solutions
(as discrete-element methods and finite-element methods). This paper describes work done to develop an additional option in the middle:
models calibrated to have the simplicity of the closed-form formulas and the accuracy of the finite-element methodology. Those models were
then included in a graphical user interface, which will be used as the structural response engine in local mechanistic-empirical (M-E) design
software. DOI: 10.1061/JTEPBS.0000027. © 2017 American Society of Civil Engineers.

Introduction

Current pavement design practices are evolving toward mechanis-
tic-empirical (M-E) design philosophies. Mechanistic-empirical
methodologies use performance models to predict distress develop-
ment from the critical mechanical responses of the pavement struc-
ture. Those mechanical responses are a function of the material
proprieties, climatic conditions, and transit distribution.

The traditional approach to solve this problem is based on
closed-form solutions, which are easy to use but are based in rigid
theoretical assumptions, limited mechanical knowledge, and harsh
simplifications. These equations are not suitable for design pur-
poses because of the precision and robustness needed. To introduce
more-realistic solutions, numeral approximated solutions have been
developed on the basis of the finite-elementmethod. Those solutions
have been proved accurate and practical through the years. However,
there are few available specific programs using this methodology
to analyze rigid pavements, and the cost associated to acquire license
and training is high. Even if those cost can be covered by design
agencies, time-related constrains on the modeling of thousands of
material proprieties, loads, and environmental conditions make
the use of finite element unpractical on M-E design guides.

Considering those aspects and the current advance in the cali-
bration and the definition of the Costa Rican mechanistic-empirical
pavement design guide (CR-ME), it was necessary to develop a

simple, accessible, fast, cost-effective, and accurate methodology
to predict rigid pavement responses. The work consisted in analyz-
ing 19,683 structures, defined from a parametric combination of
typical mechanical and geometrical properties in rigid pavements
in Costa Rica, by using the software ISLAB2000 (a finite-element-
based program) (Khazanovich et al. 2000). From the generated
database, statistical and computational models were adjusted to
predict mechanical responses on rigid pavements. The models were
based on the multiple linear regression (MLR) and artificial neural
network (ANN) methodology.

Methodology

The project can be described simply as a three-stage process. The
first stage included the definition of an extensive structures data-
base, which was then analyzed with the finite-element software
ISLAB2000 in the second phase. Finally, from this analysis, results
were extracted and then used in the calibration of the statistical
models.

The structure database definition involved an extensive biblio-
graphical revision of multiple subjects, including analysis and
design of rigid pavements, local material characterization reports,
local climate and environmental elements, temperature distribu-
tions, and regional construction techniques. All of these aimed
toward the construction of a comprehensive database, comprising
most of the broad range of possibilities regional designers have
for rigid pavement design. Special concern was placed on local
material proprieties and their particularities as they play an impor-
tant role in the structural analysis. This revision defined eight
variable parameters, which are most related to variations on the
structural responses.

Each parameter was assigned with three different discrete values
according to local variation and common design practice. The
ranges were defined to consider most of their normal variation on
local conditions, minimizing the future need of models to extrapo-
late scenarios. These parameters and their discrete values are shown
in Table 1. All possible combinations of these values and corre-
sponding critical load positions defined a total of 19,683 different
structures that were analyzed in the finite-element analysis with
ISLAB2000. Other parameters related with more stable or

1Research Assistant, Materials and Pavements Research Program,
National Laboratory of Materials and Structural Models (LanammeUCR),
Univ. of Costa Rica, San José 11501, Costa Rica (corresponding author).
E-mail: ricardo.quirosorozco@ucr.ac.cr

2General Director, Transportation Infrastructure Program, National
Laboratory of Materials and Structural Models (LanammeUCR), Univ. of
Costa Rica, San José 11501, Costa Rica. E-mail: luis.loriasalazar@ucr.ac.cr

3Researcher, Research Materials and Pavements Program, National
Laboratory of Materials and Structural Models (LanammeUCR), Univ.
of Costa Rica, San José 11501, Costa Rica. E-mail: paulina.leivapadilla@
ucr.ac.cr

Note. This manuscript was submitted on April 13, 2016; approved on
October 5, 2016; published online on January 23, 2017. Discussion period
open until June 23, 2017; separate discussions must be submitted for
individual papers. This paper is part of the Journal of Transportation En-
gineering, Part A: Systems, © ASCE, ISSN 2473-2907.

© ASCE 04017001-1 J. Transp. Eng., Part A: Syst.

 J. Transp. Eng., Part A: Systems, 2017, 143(4): 04017001 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

id
ad

 d
e 

C
os

ta
 R

ic
a 

on
 0

8/
22

/1
7.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.

http://dx.doi.org/10.1061/JTEPBS.0000027
mailto:ricardo.quirosorozco@ucr.ac.cr
mailto:luis.loriasalazar@ucr.ac.cr
mailto:paulina.leivapadilla@ucr.ac.cr
mailto:paulina.leivapadilla@ucr.ac.cr


noncritical aspects of pavement design were assumed constant on
all models; those parameters are shown in Table 2.

Geometrical dimensions used in the model were defined with a
three-slab wide configuration, including a 1.8-m (12-ft) shoulder
and an unloaded traffic slab. The system length was varied accord-
ing to load positions, minimizing the model size while always
maintaining realistic boundary conditions with unloaded slabs
on both system ends. Finite-element mesh size was defined after
repeated test on model convergence; finally, it was determined that
a 7.5-cm (3-in.) finite-element size was sufficient to guarantee
model convergence on the most demanding scenarios.

Critical responses location were based in the type of distresses
[bottom-up and top-down transverse cracking, transverse joint
faulting, and international roughness index (IRI) (ERESConsultants
and ARA 2004)] included in the Mechanistic-Empirical Pavement
Design Guide (MEPDG) by AASHTO for jointed plain concrete
pavements (JPCP) (ERES Consultants and ARA 2003): (1) longitu-
dinal tensile bending stress on the top of the slab; (2) longitudinal
tensile bending stress at the bottom of the slab; and (3) differential
vertical deflections across transverse joints.

The load applied corresponds to the vehicle T3-S2 [Type 9, five-
axle, single-trailer truck in the Federal Highway Administration
(FHWA) classification], predominantly used in Costa Rica. The
load was determined as 6,000 kg (13,200 lb) in the frontal axle
and 16,500 kg (35,200 lb) in the traction and trailer axle, consid-
ering the maximum load allowed in Costa Rica to the T3-S2
(Ministerio de Obras Públicas y Transportes 2003).

As a validation method, the authors defined a verification data-
base, comprising a smaller number of structures not included in
the calibration phase, which also included parameters outside of
the calibration database ranges. The main goal with this database
was to observe model behavior outside of the calibration ranges.
Special concern was taken with slab thickness of less than
15 cm (6 in.), as it is one of the main parameters in the structural
analysis (Huang 2004).

The third and last phase of the project included the calibration of
multiple statistical models that correlate different rigid pavement
structure parameters with the mechanical responses obtained with
finite-element analysis. The main goal was to calibrate linear re-
gression models as a way of defining a simple set of equations with
an adequate precision for M-E design purposes.

As an alternative solution, artificial neural network models were
trained with a multiple back-propagation algorithm included in the
open-source (released under the general public license GPLv3)
software Multiple Back-Propagation (Lopes and Ribeiro 2003).
Artificial neural network models have been proven as a reliable tool
for solving similar problems, specially related to modulus back-
calculation (Birkan 2006), rigid pavement airfield pavements
analysis (Ceylan et al. 1999), and structural analysis engine of the
MEPDG (ERES Consultants and ARA 2003). This methodology
has the potential to calibrate a better model, sacrificing some ease
of use, as ANN models require the use of a computational algo-
rithm; therefore, it would be necessary to develop a customized
application to evaluate and distribute the results. This issue was
resolved with the development of ApRIGID 1.0 software, which
simplifies the use of all the calibrated models in the design process
of rigid pavements.

The project originated eight different models, four multiple
linear regression models, and four based in the artificial neural net-
work methodology. All models were statistically validated; tests
applied to each model included coefficient significance, residual
normality, and residual homoscedasticity. The models were also
evaluated on certain scenarios in which they are forced to extrapo-
late data out of their calibration ranges as a way to analyze model
behavior on those extreme but plausible cases.

Results and Discussion

MLR-Based Models

Linear regression models were calibrated by using the stepwise
technique to find the best predictors for each model; several differ-
ent combinations of variables were evaluated. As a starting point,
Westergaard closed-form solutions were used; each initial regres-
sion predictor tried to replicate the form of the known equation.
Modifications and new variable transformations were made as
each test model was calibrated and analyzed. Finally, a statistical
variable reduction approach was used to reduce the number of total
predictors. In all cases, it was found that eight different variables
were sufficient to explain the data variability and keep a compact
model that is easy to use according to the project objectives.

Table 1. Variables and Values Used in the Rigid Pavement Structures
Modeling

Variable Value

Joint spacing [m (ft)] 3.7 (12)
4.6 (15)
5.2 (17)

Concrete elastic modulus [GPa (ksi)] 27.6 (4,000)
34.5 (5,000)
41.2 (6,000)

Slab thickness [cm (in.)] 15.2 (6)
33.0 (13)
43.2 (17)

Temperature differential [°C (°F)] −10 (−18)
−2.3 (−4)
6.6 (12)

Subgrade reaction modulus [MPa=m (psi/in.)] 27.1 (100)
54.3 (200)
81.4 (300)

Base elastic modulus [GPa (ksi)] 0.34 (50)
1.90 (250)
3.45 (500)

Dowel diameter [cm (in.)] 0 (0)
2.5 (1)
3.8 (1.5)

Load transfer efficiency (%) 10
50
80

Table 2. Fixed Parameters Used in the Rigid Pavement Structures
Modeling

Parameters Value

Base thickness [cm (in.)] 25 (10)
Concrete Poisson coefficient 0.175
Granular base Poisson coefficient 0.35
Concrete thermal expansion
coefficient [1=°C (1=°F)]

9.9 × 10−6 ð5.5 × 10−6Þ

Concrete density [kg=m3ðlb=in:3Þ] 2,408 (0.0870)
Wheel wander [m (in.)] 0.3 (12)
Tire pressure [kPa (psi)] (110)
Tire aspect ratio 0.5
Slab width [m (ft)] 3.65 (12)
Shoulder width [m (ft)] 1.80 (6)

© ASCE 04017001-2 J. Transp. Eng., Part A: Syst.
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Four different models were calibrated: longitudinal tensile stress
at the top of the slab caused by center load case (Model A)
[Eq. (1)]; longitudinal tensile stress at the bottom of the slab caused
by edge loading (Model B) [Eq. (2)]; differential deflections

between adjacent slabs caused by corner loading on nondoweled
pavements (Model C1) [Eq. (3)]; and differential deflections
between adjacent slabs caused by corner loading on doweled
pavements (Model C2) [Eq. (4)]

Model A

σy;s ¼ −281.12þ 102.9 × L − 63.64 ×Δt − 3.0 × LTE − 5.083 × E × L ×Δt
l

þ 1

h2

�
−60,509.9 × Lþ 52,245.4 × l − 116.37 × E × l ×Δt

L

�
þ 24.061 × l ×Δt

L
ð1Þ

Model B

σy;b ¼ 29.942þ 4.046 ×Δt − 0.338 × LTEþ 0.911 × LEΔt
1,000 × l

− 3.779 × lΔt
L

þ 1

h2

�
21.094 ×Δt × E

1,000
− 4.478 × Eb − 63.766 × Lþ 1,053.909 × l

�
ð2Þ

Model C1

δ1−2 ¼ −0.0223 − 0.1599 × L
1,000

− 1.4885 × E
106

− 1.4528 × h
1,000

− 0.1230 × LTE
1,000

þ 2.967 × l
1,000

þ 1

k × l

�
270.62 × k

1,000
− 8,038.78

l2

�
þ 1,215.96ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E × h3 × k
p ð3Þ

Model C2

δ1−2 ¼ 5.584 × 10−3 − 4.507 × L
106

− 1.487 × k
106

− 2.494 × Ø
1,000

− 18.944 × LTE
106

þ 36.059 × l
106

þ 3.982 × 1

l × 1,000
þ 7.763 × Ø × LTE

106
þ 34.139 × l4

E × h3 × 1,000
ð4Þ

where σy;s = longitudinal tensile stress at the top of the slab (kPa);
σy;b = longitudinal tensile stress on slab bottom (MPa); δ1−2 =
differential deflections between slabs (cm); L = slab length (m);
Δt = temperature differential through slab thickness (°C);
LTE = load transfer efficiency (%); E = concrete elastic modulus
(GPa); Eb = granular base elastic modulus (GPa); h = slab thickness
(cm); k = coefficient of subgrade reaction (MPa=m), Ø = dowel
diameter (cm); and l = radius of relative stiffness [Eq. (5)]

l ¼
�
E × h3

k

�
0.25

ð5Þ

Every model has values of adjusted R2 of more than 0.95.
Reviewing the null hypothesis of homoscedasticity to justify the
use of ordinary least squares (OLS) through White test, there
was proved heteroscedasticity in residuals; consequently, it was
necessary to use generalized least squares (GLS) to correct the
variance. The general statistical results obtained are show in
Table 3, in which the significance of every variable is more than
95% of confidence (tcrit ¼ 2.576).

ANN-Based Models

The same data set was used to calibrate an ANN with a feed-
forward network; topology was defined as 8-15-1 (eight input neu-
rons, 15 neurons in a hidden layer, and a single output). This was done
with themultiple back-propagation algorithmbased on the implemen-
tation of the open-source software Multiple Back-Propagation.

Convergence criteria were defined at a root-mean-square error of
0.001. A small script was then constructed to calculate residual errors
and proceed to a direct performance comparison between both ANN
and MLR models.

Comparison between MLR and ANN Models

In most cases, the artificial neural network model results were sub-
stantially better than those of the multiple linear regression model.
A numerical comparison between both methodologies can be found
in Table 3.

In Models A and B, the artificial neural network model results
were substantially better than those of the multiple linear regression
model. In the first case, the mean residual errors of the MLR model
were computed at 9.8%, whereas ANN errors on the same data set
were only 5.6%. Figs. 1(a and b) compare both models, and it is
evident that the ANN has a better fit on all stress ranges. In the
second case, Model B, mean residual errors in the regression model
were computed at 11.0%, whereas ANN errors on the same data set
were only 6.60%. Figs. 2(a and b) compare both models, and it is
evident that the ANN has a better fit on all stress ranges.

Meanwhile, performance differences between MLR and ANN
on Models C1 and C2 are virtually nonexistent as shown on Figs. 3
(a and b) and 4(a and b), respectively. Mean errors were computed
at approximately 7.5 and 3.2%, respectively. Multiple linear regres-
sion showed a slight advantage in these cases.

During model verification, it was observed that the model was
unable to predict in an acceptable way stresses of less than 210 kPa

© ASCE 04017001-3 J. Transp. Eng., Part A: Syst.
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(30 psi). Scenarios in which critical tensile stresses are extremely
low or even in compression are not predicted well by the
model. This behavior was also observed in Model B. Local cali-
brated fatigue models (Monge 2013) showed that stresses less than
210 kPa (30 psi) do not cause a quantifiable fatigue damage on
concrete. A regular 4.5-MPa modulus of rupture concrete has, ac-
cording to those models, a capacity of more than 1033 allowed load
applications before failure in those stress ranges, which in practical
terms is almost an infinite quantity for pavement design.

Model behavior with structures outside of their calibration
ranges showed adequate predictions on most cases. The exception
was found on slabs thickness less than 10 cm (4 in.). In those cases,
all responses were underestimated by the model. This problem was
observed in all scenarios and is related with extreme structural con-
ditions on thin slabs. Slab thickness of less than 10 cm (4 in.) are
not commonly found on rigid pavement structures, as they have a
poor fatigue performance. Thin slab design generally uses specific
design guidelines independent of concrete pavement design guides.

Table 3. Statistical Analysis of Multiple Linear Regression and Artificial Neural Networks

Model

MLR

ANN residual error (%)R2, adjusted Variable Coefficient Standard error t Residual error (%)

A 0.987 V1 4.551 0.082 55.54 9.8 5.6
V2 −5.128 0.128 −40.08
V3 −0.435 0.006 −72.74
V4 −1.072 0 −82.52
V5 −414.61 4.936 −83.99
V6 2943.414 10.482 90
V7 5.11 0.076 67.01
V8 −26.41 0.001 −31.53

Constant −40.772 1.505 −27.09
B 0.987 V1 4.046 0.148 27.32 11.0 6.6

V2 −0.338 0.006 −56.85
V3 0.001 0 61.4
V4 0.021 0.001 34.99
V5 −4.478 0.056 −80.19
V6 −63.766 3.438 −18.55
V7 1,053.909 7.667 137.46
V8 −3.779 0.094 −40.41

Constant 29.942 0.529 56.65
C1 0.974 V1 −0.16 0.018 −9.03 6.8 8.3

V2 −1.489 0.068 −22.05
V3 −1.453 0.071 −20.46
V4 −0.123 0.002 −72.94
V5 2.967 0.043 69.17
V6 1,215.96 29.987 40.55
V7 0.271 0.02 13.57
V8 −8,038.778 285.264 −28.18

Constant −0.022 0.003 −7.83
C2 0.968 V1 −4.507 0.7 −6.44 3.12 3.3

V2 −1.487 0.07 −21.22
V3 −2.494 0.015 −162.27
V4 −18.944 0.372 −50.87
V5 36.059 1.606 22.46
V6 3.982 0.272 14.63
V7 7.763 0.28 27.76
V8 34.139 1.974 17.3

Constant 0.006 0 113.63

(a) (b)

Fig. 1. Model A verification results: (a) MLR; (b) ANN

© ASCE 04017001-4 J. Transp. Eng., Part A: Syst.
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This model inability to predict thin slab stresses accurately is con-
sidered as a noncritical limitation that does not jeopardize model
use on regular rigid pavement design.

ApRIGID 1.0

A graphical user interface (GUI) called ApRIGID was developed
to facilitate the use of both the MLR and ANN models by po-
tential users. This software provides a fast and simple option to
obtain critical responses necessary in the design of rigid pave-
ments with M-E philosophies. It was developed on the program-
ming language Java and requires at least the Java Runtime
Environment 1.6.0.

As shown in Fig. 5, ApRIGID 1.0 allows to define eight param-
eters of a rigid pavement structure: joint spacing, concrete elastic
modulus, slab thickness, temperature differential, subgrade reaction
coefficient, granular base elastic modulus, dowel diameter, and

longitudinal joint load transfer efficiency. The results obtained
are longitudinal tensile stress at the top and bottom of the slab and
differential deflections between slabs (nondoweled and doweled).
As shown in Fig. 6, the corresponding value and position of the
response is displayed by the interface in a way that is easy to in-
terpret. When it is necessary to analyze multiple structures, the soft-
ware has included a batch analysis module. Text files as shown in
Fig. 7 can be imported and then analyzed. The results are tabulated
on a comma-separated value file type (.csv) compatible with
common commercial spreadsheet softwares.

Conclusions

The statistical calibration of these models is a step in a broad spec-
trum of investigation projects devoted to the local implementation
of a mechanistic-empirical pavement design guide, which is

(a) (b)

Fig. 2. Model B verification results: (a) MLR; (b) ANN

(a) (b)

Fig. 3. Model C1 verification results: (a) MLR; (b) ANN

(a) (b)

Fig. 4. Model C2 verification results: (a) MLR; (b) ANN
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conceptualized, calibrated, and validated for regional materials,
service loads, climatic conditions, and construction techniques.
The MLR structural models presented in this paper will be included
in the initial guide draft as its structural analysis engine, allowing
local designers a firsthand approach with the new design philoso-
phy and an understanding of the underneath process, manual cal-
culations, and advantages of such change from previous guides.

The calibration data set definition provided a large number
of different structures, comprising most of the design possibilities
available to local designers. The eight variable parameters are con-
sidered to be sufficient to characterize a regular JPCP structure and
the materials used. Considering local variation of these parameters,
the selected range of values was sufficient to include most of the
possible design scenarios.

Model verification revealed that errors were concentrated on
certain scenarios related with low tensile stresses of generally less
than 210 kPa (30 psi). In some cases, critical compression stresses
were observed in the data, in cases related with a positive interac-
tion of load and temperature differentials effects. Evaluating a
210-kPa (30-psi) tensile stress in a fatigue model demonstrated that
those scenarios are not to critical fatigue performance prediction
and therefore negligible for all design purposes.

The verification data set served evaluation purposes in scenarios
in which structures had certain parameters defined outside of the

Fig. 5. ApRIGID graphical user interface—inputs

Fig. 6. ApRIGID graphical user interface—results

Fig. 7. ApRIGID graphical user interface—batch analysis module

© ASCE 04017001-6 J. Transp. Eng., Part A: Syst.
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calibration ranges. The analysis showed that the models presented
prediction problems with thin slabs of less than 10 cm (4 in.). Other
than this, the models correctly extrapolated stress and deflection
values for other scenarios, which included off-range elastic modu-
lus, subgrade reaction values, temperature differentials, and dowel
diameters. Thin JPCP slabs of less than 10 cm (4 in.) are not
common in rigid pavement design, as their fatigue performance
is poor. Thus, the limitation with these structures is not worth
rejecting the calibrated models, as the models are perfectly capable
for standard rigid pavement slab dimensions. It is possible that
model improvement for these scenarios requires a different predic-
tor and model design to adequately fit extreme stresses attributed to
reduced slab thickness.

The artificial neural network models proved to be a viable
method for critical response prediction. The results were satisfac-
tory. It was possible to verify a better data fit, compared with multi-
ple linear regression models, as the network training modeled better
data nonlinearity and different interactions between parameters.
A comparison between both methodologies showed a clear and
substantial reduction of mean residual errors. Conversely, data
extrapolation from calibration variable ranges is less reliable, which
is something that must be noted for these models.

Considering all of this, the artificial neural network models here
calibrated were recommended to be the structural engine for Level
III (low-traffic rural roads, in which manual stress calculation
is viable alongside basic material characterization) analysis of
the proposed Costa Rican mechanistic-empirical pavement design
guide. For Levels I and II (medium- and high-importance roads
and more-specialized material characterization), artificial neural
network models are recommended, as the use of design software
is necessary. The software ApRIGID 1.0was developed as a tool for
ANN models and their use for design purposes. Its architecture is
highly modular, allowing the code to be reused for the future CR-
ME design software. All software modules were thoroughly tested
in local structures and proved to be an important tool for M-E
implementation and training, allowing designers to analyze

simultaneously a great number of pavement structures with mini-
mal computing time.
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