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Abstract   Evaluation and characterization of pavements that incorporate sustain-
able technologies and materials such as Warm Mix Asphalt (WMA) and Re-
claimed Asphalt Pavements (RAP)  becomes especially important for their future 
applicability. Artificial neural networks (ANN) have been recently used to for-
ward-calculate pavement layer moduli from the falling weight deflectometer 
(FWD) test results. A full bond layer interface condition is commonly assumed to 
performed pavement layer moduli calculations, however, this condition is not 
guaranteed to happen in the field. The objective of this study was to develop ANN 
models capable of predicting pavement layer moduli rapidly and reliably for full 
bond and full slip layer interface conditions. ANN models were used to estimate 
the moduli of the National Center for asphalt Technology (NCAT) Test Track 
structural sustainable sections for the full bond (FB) condition and the full slip 
(FS) condition. The results indicated that WMA sections had lower moduli at all 
tested temperatures compared to a control section (7 to 10% lower), likely due to 
the reduced binder aging experienced by these sections. RAP sections had higher 
moduli (16 to 43% higher) and were less susceptible to changes in temperature 
due to the presence of stiffer aged binder. Overall, backcalculated layer moduli us-
ing the conventional iterative approach had the highest error, followed by a signif-
icant decrease in error by ANN predicted moduli under full bond condition. How-
ever, the consideration of the ANN with full slip condition yielded the best results 
(lowest error). 

Keywords Warm Mix Asphalt, Reclaimed Asphalt Pavements, Neural Networks, 
FWD, Pavement Evaluation 
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1. Introduction 

The asphalt industry has been developing sustainable paving technologies and 
practicing green-build techniques since the 1960’s through the reduction in emis-
sions from asphalt plants and  through  recycling (APAI, 2008). Since 1970, with 
the implementation of the Clean Air Act, total emissions from asphalt plants have 
dropped by more than 97% while annual production has increased by more than 
250% (Cervarich, 2004).  

The asphalt industry has been implementing the use of warm mix asphalt 
(WMA) as means of reducing greenhouse gas emissions. On the other hand, as-
phalt pavement is the most recycled material in the nation, with about 100 million 
tons of asphalt pavement being reclaimed every year and approximately 80% of it 
being recycled back into new asphalt mixes (Hansen & Newcomb, 2007). Evalua-
tion and characterization of pavements that incorporate sustainable technologies 
and materials such as WMA and Reclaimed Asphalt Pavements (RAP)  becomes 
especially important for their future applicability. 

One of the most common field tests used to obtain pavement layer moduli is 
done with the falling weight deflectometer (FWD). Artificial neural networks 
(ANN) have also been used to calculate pavement layer moduli and critical pave-
ment responses from FWD tests results (Meier et al,. 1995, 1997). An artificial 
neural network is a massively parallel distributed processor that has a natural pro-
pensity for storing experimental knowledge and making it available for use 
(Priddy and Keller, 2005). Consequently, knowledge is acquired by the network 
through a learning (training) process. The aim of the learning process is to map a 
given relation between inputs and outputs of the network.  

One of the most common networks selected by pavement researchers uses a 
back-propagation algorithm (Meier et al, 1995, Ferregut et al.,1999, Ceylan et al, 
2005). This learning algorithm is applied to multilayer feed-forward networks 
consisting of processing elements with continuous and differentiable activation 
functions. Such networks associated with the back-propagation learning algorithm 
are also called back-propagation networks (Priddy and Keller, 2005). Errors are 
calculated from outputs and targets and then used to update output weights by 
back propagating the error. The process continues until the performance of the 
network is optimized (i.e. minimum mean square error - MSE calculated between 
outputs and targets is obtained).  

Even though, ANN models are excellent tools for pavement layer moduli esti-
mation, these models depend on how the field conditions are being modeled.   
Romanoschi and Metcalf (2003) evaluated the potential error in pavement layer 
moduli backcalculation due to improper modeling of the layer interface condition. 
It was found that the condition of the wearing-binder layer interface leads to an er-
ror in backcalculated moduli for the granular base layers, for both flexible and the 
semirigid structures. Lenngren and Olsson (2003) studied the effect of performing 
conventional backcalculation on a four-layer system with full slip (air gap) condi-



3 

tion between layers. Their results indicated that the backcalculated modulus of the 
unbound base was most affected by adding friction between layers. The effect on 
the unbound base is considerable and may explain a lot of underestimated modu-
lus on base courses.  

This document focuses on the evaluation and characterization of pavements 
that incorporate sustainable technologies and materials such as WMA and RAP. 
The methodology incorporates advanced modeling through the use of ANN mod-
els and full slip interaction between layers. 

1.1 Objective 

The objective of this study was to develop ANN models capable of predicting 
pavement layer moduli rapidly and reliably for the sustainable pavement structures 
placed at the NCAT Test Track.  

2. Development Of ANNs For Sustainable Sections At The 2009 
Test Track 

Table 1 contains pertinent as-built information for each lift in all the studied sec-
tions.  The primary difference between S9 (control) and sections S10 and S11 was 
the technology used to create the mixture at the plant. S10 was produced with a 
foam-based warm mix asphalt (WMA) technology and S11 was produced as an 
additive-based WMA. The primary difference between S9 (control) and sections 
N10 and N11 was the inclusion of reclaimed asphalt pavement (RAP), the asphalt 
modifier and the technology used to create the mixture at the plant. Mixes in N10 
and N11 were used without asphalt modifiers but each lift was designed to incor-
porate 50% RAP in the mixture. In addition, N11 was produced as a WMA mix-
ture. The effect of the aged binder contained in the RAP resulted in the highest 
Superpave performance grade for the intermediate and bottom lifts of N10 (PG 
94-10). Overall, all sections and lifts met or exceeded 92% of maximum theoreti-
cal density (less than 8.0% in-place air voids).  

A synthetic database was generated using layered-elastic analysis (LEA) for a 
three-layered flexible pavement structure. For each ANN, a total of 100,000 data 
points were generated using multiple load levels ranging from 5,000 lb to 20,000 
lb. To create each ANN, the variables deflections (nine total), layer thicknesses 
and load were selected as input signals and the moduli of the AC layer (E1), the 
granular base (E2) and the subgrade (E3) were selected as the target signals. 
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Table 1 Asphalt Concrete Layer Properties – As Built  

Lift 1-Surface 

Section S9 S10 S11 N10 N11 

%Modifier 2.8 2.8 2.8 0.0 0.0 

PG Gradea 76-22 76-22 76-22 82-10 80-16 

RAPb, % 0.0 0.0 0.0 50 50 

Asphalt, % 6.1 6.1 6.4 6.0 6.1 

Air Voids, % 6.9 7.5 6.4 7.4 8.0 

Thickness, in 1.2 1.3 1.5 1.4 1.2 

Lift 2-Intermediate 

Section S9 S10 S11 N10 N11 

%Modifier 2.8 2.8 2.8 0.0 0.0 

PG Gradea 76-22 76-22 76-22 94-10 88-10 

RAPb, % 0.0 0.0 0.0 50 50 

Asphalt, % 4.4 4.7 4.6 4.4 4.7 

Air Voids, % 7.2 7.0 7.2 7.1 6.8 

Thickness, in 2.8 2.7 2.8 2.7 3.0 

Lift 3-Base 

Section S9 S10 S11 N10 N11 

%Modifier 0.0 0.0 0.0 0.0 0.0 

PG Gradea 67-22 67-22 67-22 94-10 88-10 

RAPb, % 0.0 0.0 0.0 50 50 

Asphalt, % 4.7 4.7 5.0 4.7 4.6 

Air Voids, % 7.4 7.9 6.2 5.0 5.8 

Thickness, in 3.0 3.0 2.6 3.0 2.9 
aSuperpave Asphalt Performance Grade 
bReclaimed asphalt pavement 

 
The learning method used to develop these ANN models was a feed-forward 

back propagation with the sigmoid function, Equation 1, as the transfer function. It 
was found that the three-layer network with twenty nodes in the two hidden layers 
was the most appropriate for this dataset. The basic form of the ANN is given by 
Equations 1 through 4. For these equations, a single index indicates an array; dual 
indices represent a matrix with the first letter indicating the values in the row and 
the second letter indicating the values in the column. The index i represents the 
input parameters, the index k represents the first hidden layer, and the j subscript 
represents the second hidden layer. An illustration of the model and the training 
process are shown in Figure 1. 

݂ሺܶሻ ൌ ଶ

ଵାషమ
െ 1  (1)  
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Where; 
T = placeholder variable, 
ܪ
ଵ	= transferred value of nodes at first hidden layer, 

ܪ
ଶ ൌ	transferred value of nodes at second hidden layer, 

Pi  = input variables, 

ܹ
ଵ  = weight factors for first hidden layer, 

ܹ
ଶ 	= weight factors for the second hidden layer, 

ܹ
ଷ= weight factors for the output layer, 

ܤ
ଵ	= bias factors for first layer, 

ܤ
ଶ	= bias factors for second layer, 

B0 = bias factor for outer layer, 
m = number of nodes in first hidden layer  
n = number of nodes in second hidden layer  
,ଵܧሺ݊ܮ ,ଶܧ -ଷሻ = natural logarithm of the AC, base and subgrade modulus, reܧ

spectively. 

 

Fig. 1 Schematic of ANN model and training process 

Checking the adequacy of the trained ANN’s was performed by the use of 
goodness of fit regression parameters. Since the dataset used for this exercise was 
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synthetic, it was expected to have estimated moduli highly correlated to the actual 
values and with minimum errors as shown in Table 2. 

Table 2 Goodness of Fit for the Synthetic Database ANN models 

Parameter 
ANN Predicted – Full Bond ANN Predicted – Full Slip 

R2 Se/Sy R2 Se/Sy 

E1 0.99 0.069 0.99 0.057 

E2 0.99 0.083 0.99 0.071 

E3 1.00 0.009 1.00 0.010 

3. Application of ANN Models on Measured Deflection Basins 

ANNs were used to estimate the moduli of seven structural sections built in 2009 
for the full bond (FB) condition and the full slip (FS) condition. Figure 2 illus-
trates the measured relationship between backcalculated AC modulus and mid-
depth temperature. For each test section, the AC modulus was estimated at the 
outside wheelpath, where greater damage is expected to occur.  

 

Fig. 2 Relationship Between Estimated AC Modulus and Mid-depth Temperature 

To determine if the stiffness-temperature relationship was statistically similar 
among the sections, 95% confidence intervals were obtained for the intercepts and 
slopes of all the plotted relationships (Figure 3). If the intervals overlapped, it 
could be concluded that the differences in the regression coefficients were not sta-
tistically significant. At 95% confidence level, there was no evidence that the in-
tercepts of high RAP sections were statistically different from the control. Howev-
er, the intercepts of the WMA sections were significantly lower than the control, 
indicating that the modulus tended to be lower at all temperatures. The slopes of 
the high RAP sections were lower than that of the control section and virgin 
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WMA sections, which means they were less influenced by temperature presuma-
bly due to the presence of aged binder. 

 

 

Fig. 3 95% Confidence Intervals for Regression Coefficients 

Table 3 shows the backcalculated and ANN-predicted layer moduli range for 
all sections. In general, the predicted moduli from ANN-FB were not statistically 
different to backcalculated for all three layers (95% confidence level). The same 
trend was observed between ANN-FS predicted moduli and backcalculated for E1 
and E3. In the case of E2, the results showed that ANN-FS predicted moduli were 
statistically different (95% confidence level) from more than double the 
backcalculated ones. These results suggested that the moduli of the granular base 
were underestimated for considering a full bond condition when applying conven-
tional backcalculation or when predicting moduli with ANN-FB.  

Table 3 Ranges of Predicted Layer Moduli for All Sections 

Technique Section E1, ksi E2, ksi E3, ksi 

Conventional 

Backcalculation 

S9 (Control) 134 - 2357 1.0 - 11.2 14 – 42 

S10 (WMA-F) 122 - 1946 1.0 - 8.1 17 - 38.8 

S11 (WMA-A) 124 - 2060 1.0 - 7.8 13 - 43.9 

N10 (HMA-RAP) 172 - 2440 1.0 - 9.8 26.1 - 64.2 

N11 (WMA-RAP) 161 - 2173 1.6 - 13.1 28.5 - 52.6 

ANN Full Bond 

S9 129 - 2519 1.0 - 12.5 12.2 - 38.8 

S10 108 - 2073 1.0 - 7.0 13 - 35.1 

S11 115 - 2190 1.0 - 6.4 10.2 - 41.5 

N10 230 - 2536 1.0 - 11.2 17.1 - 54.8 

N11 185 - 2336 1.3 - 13.4 25.1 - 46.6 

ANN Full Slip 

S9 151- 2231 1.1 - 26.2 12.1 – 39 

S10 129 - 1817 1.3 - 15.8 14.1 - 36.6 

S11 135 - 1941 1.1 - 13.1 9.1 - 41.7 

N10 117 - 2313 1.1 - 35.3 14.9 - 55.7 

N11 159 - 2169 2.6 - 48.6 27.3 - 48.7 

Control
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WMA-A

HMA-RAP

WMA-RAP
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Figure 4 shows the relationship between the moduli obtained from convention-
al backcalculation and predicted moduli using ANN-FS. The slope of a linear 
trend-line plotted between backcalculated moduli and ANN moduli was used to 
quantify the expected difference. For this case, the slope indicated that an overall 
decrease of 6.0% in the modulus of the AC layer was obtained when using ANN-
FS. In this case an R2 value close to 1.0 indicates that the relationship between 
variables can be expressed with a linear function.   

   

Fig. 4 Backcalculated vs. ANN Predicted E1 of the Control Section (S9) 

Table 4 shows the slope of a linear function calculated between backcalculated 
moduli and ANN moduli and its associated R2 value for each section. These re-
sults were used to quantify the expected difference and overall trend. When con-
sidering the observed difference for all the sections and for all the layer moduli, 
the results indicated that an overall decrease in the estimated moduli was obtained 
for the three layers (from 5.0% to 10.0%) when comparing backcalculated and 
ANN-FB methods. The largest decrease in modulus was obtained for section S10 
followed by S11 in the case of E1. The results also indicated that an overall de-
crease in the estimated moduli was obtained for E1 and E3 when comparing 
backcalculated and ANN-FS methods. However, a significant increase (overall 
234%) was observed in the case of E2. Section N10 was the most affected with an 
increase in 327%. Although the use of ANNs in full slip condition indicated that 
the moduli of the granular base can be more than twice the estimated by conven-
tional backcalculation, the results provided lower RMSE values and more realistic 
moduli for the base. The modulus of the granular base obtained from conventional 
backcalculation ranged from 1.0 psi to 15.7 psi. The modulus of the granular base 
obtained from ANN-FS ranged from 1.1 psi to 48 psi which can be considered as 
more realistic moduli range for the base. 
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Table 4 Overall Changes in Moduli for All Sections 

ANN Section 
Slope of Back. Mod. Vs 
ANN Mod. 

R2 of Back. Mod. Vs ANN 
Mod. 

E1 E2 E3 E1 E2 E3 

Full 
Bond 

S9 (Control) 0.95 0.88 0.93 0.98 0.85 0.85 

S10 (WMA-F) 0.84 0.97 0.89 0.96 0.65 0.7 

S11 (WMA-A) 0.85 0.97 0.94 0.97 0.78 0.84 

N10 (HMA-RAP) 0.91 0.88 0.94 0.97 0.9 0.81 

N11 (WMA-RAP) 1.01 1.11 0.89 0.99 0.89 0.88 

Average 0.93 0.91 0.96 0.92 0.97 0.81 

Full 
Slip 

S9 0.94 2.16 0.94 0.99 0.96 0.94 

S10 0.90 1.90 0.96 0.98 0.93 0.91 

S11 0.91 1.91 0.95 0.98 0.94 0.93 

N10 0.98 2.36 1.07 0.99 0.94 0.86 

N11 0.99 3.27 0.84 1.00 0.90 0.89 

Average 0.95 0.94 2.32 0.95 0.99 0.93 

 
Figure 5 shows the cumulative distribution plot (CDP) of the Root Mean 

Square (RMS) error for three different scenarios. CDPs for ANN-FB and ANN-FS 
showed a significant decrease in the level of error from backcalculated values. In 
addition, the consideration of a full slip condition yielded even better results. A 
maximum RMS error of 3.0% was set to determine the amount of data to be used 
for all the analyses regarding the 2009 Test Track research cycle. Approximately 
84% of the backcalculation solutions generated by conventional backcalculation 
had RMS errors below 3.0%. In the case of ANN-FB method, 88% of the results 
had RMS errors below 3.0%. Finally, for ANN-FS method, 92% had RMS errors 
below 3.0%. When the amount of data below 1.0% were considered as an “excel-
lent match” between measured and calculated deflections (Everseries User’s 
Guide, 2005), only 20% were found below 1.0% for backcalculated values, 73% 
for ANN-FB and 88% for ANN-FS. These results demonstrated the significant 
advantage of using ANNs over conventional backcalculation that does not consid-
er a full-slip condition.  
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Fig. 5 Cumulative Distribution Plot For Estimated Moduli 

Table 5 shows an extension of the previous analysis applied to all sections. A 
significant increase in the amount of data that was considered “excellent match” 
between measured and calculated deflections was obtained when using ANNs 
compared to conventional backcalculation for all sections. The largest increase 
was observed from conventional backcalculation to ANN-FS for all the sections. 
Section S10 had the lowest overall increment followed by S11 and N10. These re-
sults were attributed to the higher variability observed in the layers moduli due to 
the higher permanent deformation (rutting) for sections S10 and S11. These sec-
tions had rut depths 35% to 54% higher than the control section (West et al, 2012). 
Rutting is a type of distress that changes the shape of the pavement surface in-
creasing the variability in terms of thickness and density.  

Table 5 Analysis of RMS errors for all sections 

RMSE Section 

Percent data below cutoff value  

Conv. Back. ANN FB ANN FS 

Below 1%  

S9 (Control) 21.5 76.2 93.2 

S10 (WMA-F) 22.9 40.9 78.3 

S11 (WMA-A) 21.9 54.5 79.8 

N10 (HMA-RAP) 8.28 53.8 65.1 

N11 (WMA-RAP) 8.2 92.9 99.9 

Below 3% 

S9 85.8 94.8 99.2 

S10 89.9 81.3 97.2 

S11 74.7 83.2 95 

N10 86.1 86.2 87.6 

N11 92.8 100 100 

 
The amount of data below 3.0% was also increased when using ANN-FB for 

all sections but S10. However, the increment was significant when using ANN-FS 
for all sections. In general, the quality of the layer moduli prediction (RMSE < 
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1.0%) was significantly increased by the use of ANNs and the amount of usable 
data (RMSE < 3.0%) was also significantly increased by the consideration of full 
slip condition between layers (ANN-FS). 

4. Summary 

The increasing use of sustainable pavement technologies and the transition of 
many state agencies from an empirical pavement design method to a mechanistic-
empirical approach have prompted the need to evaluate the physical and structural 
characteristics of these sustainable pavements. By doing so, performance predic-
tion can be improved, thus allowing for more efficient designs. In this study, four 
sustainable pavement test sections were included: two warm mix asphalt sections 
(one foam-based and one additive-based) and two high RAP sections (one pro-
duced as a hot mix and one produced as a warm mix). All of these were compared 
to a control section of the same thickness consisting of dense-graded materials and 
produced as a hot mix. 

Customized ANN models were created based on structural sections built in 
2009 at the NCAT Test Track. ANN-predicted layer moduli from synthetic results 
were comparable to backcalculated layer moduli in terms of R2 regression param-
eters and consequently adequate to predict layer moduli.  

An analysis of the potential errors in pavement layer moduli backcalculation 
due to improper modeling of the layer interface condition was performed using 
synthetic data. The results indicated that the tendency was to significantly overes-
timate the AC modulus (by 30%) and also the tendency was to underestimate the 
modulus of the granular base (by 74%). 

ANNs were used to estimate the moduli of the NCAT Test Track structural sec-
tions for the full bond (FB) condition and the full slip (FS) condition. 
Backcalculated layer moduli had the highest overall error followed by a signifi-
cant decrease in error by ANN predicted moduli under full bond condition. How-
ever, the consideration of the ANN with full slip condition yielded the best results 
(lowest error). 

5. Conclusions 

Based upon the research conducted in this study, the following conclusions can be 
made concerning the application of ANNs used to characterize material properties. 
1. Contrary to backcalculation, ANNs do not depend on seed values and the 

ANN-predicted layer moduli can be estimated at lower RMS errors. 
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2. Significant differences in layer moduli can be obtained due to the improper 
modeling of the layer interface condition. The modulus of the granular base 
can potentially be the most affected. 

3. The capability for ANNs to predict pavement layer moduli was validated us-
ing multiple load levels and full slip condition as a layer interaction. This pre-
sented a clear advantage over previous studies that have been focused on one 
load level and full bond conditions. 

4. Virgin WMA sections had lower AC moduli than the control. Although the 
differences were statistically significant due to low variability in the sections, 
the magnitudes of the moduli of all sections produced with virgin aggregates 
were within 10%, which may not be considered to have a practical impact. 
High RAP mixes exhibited the highest AC moduli overall. 
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