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Abstract:Most fatigue cracking models in use have been developed using the Ordinary Least Squares (OLS) method. 13 
However, the fatigue cracking data (or any type of cracking data) consists of censored data since it has a lower limit 14 
of zero. This can cause bias in the fatigue cracking model, because the data is not continuous but has positive 15 
probability mass at zero. Additionally, when data is selected only from pavements that exhibit cracking, bias will 16 
result because the estimates are based on a non-random sample. Moreover, bias can also be generated by 17 
unobserved factors not included in the fatigue cracking model. This type of bias can be removed by considering the 18 
deterioration history of each pavement section, if the unobserved factors are section-specific. 19 
 Based on an LTPP dataset consisting of SPS-1 pavement sections, the authors have modeled fatigue cracking 20 
of pavement structures. The data were initially used in modeling fatigue cracking by means of OLS and by a corner 21 
solution regression model (tobit) that accounts for the data censoring in fatigue cracking. The tobit model was used, 22 
analyzing the data as pooled and also as a panel dataset (by random-effects), to check for possible bias in the model 23 
due to unobserved heterogeneity.  24 

 The OLS fatigue cracking model exhibits several types of biases due to heterogeneity and erroneous 25 
assumptions in the modeling process. The model estimates and test statistics used to evaluate them indicated that the 26 
preferred fatigue cracking model was the random effects tobit model because it accounts for the censoring and 27 
heterogeneity bias. Estimating the model by accounting for these types of bias in the data resulted in significant 28 
changes in the effects of different parameters affecting fatigue through time. 29 
 30 
Introduction  31 
 32 

In current pavement design and analysis practice, both empirical and mechanistic-empirical types of models 33 
are used to characterize the performance of pavement structures. This is because it is not currently possible to 34 
characterize the behavior of pavement structures and materials in a completely mechanistic manner, due to the 35 
complexity associated in the processes that affect the different pavement layers and the variability associated with 36 
the parameters involved.  37 

Consequently, there are many available pavement deterioration models associated with design and analysis 38 
procedures throughout the United States, and worldwide. Each of these models has been developed with the goal of 39 
characterizing pavement structures under specified conditions. Therefore, it is of the utmost importance to ensure 40 
that the models that are currently used, and the ones that will be developed in the future, are calibrated for local 41 
conditions and account for the different types of bias and censoring that may be associated with data used in each 42 
one of these models. 43 

Flexible pavements can exhibit several types of distress.  Many types of distress are due to poor construction, 44 
inadequate maintenance, and poor materials, and as such, the distress is not directly related to design. However, 45 
there are several distress types that can be mitigated through adequate design of the pavement structure. Examples of 46 
such distress types include: (i) rutting, which usually develops in the initial years of the pavement’s life and then 47 
gradually decreases to lower levels; (ii) fatigue, or alligator cracking that starts to develop during the service life of 48 
the pavement with repeated traffic loadings; and (iii) low temperature cracking that can occur at any time during the 49 
pavement’s service life, due to large temperature differentials.  50 

The current paper focuses on fatigue cracking. In particular, the phenomenon of fatigue crack progression in 51 
flexible pavements is addressed. Pavement fatigue cracking is a distress mechanism that occurs mainly in areas 52 
subjected to repeated traffic loading (e.g. vehicle wheel path) due to failure of the surface or base layer that is 53 
subjected to repeated tensile stresses. Fatigue cracking initiates at the bottom of the asphalt surface (or stabilized 54 



 

base) where the tensile stress or strain due to the applied traffic load is maximum and therefore promote 55 
accumulation of damage that will eventually result in the formation of a crack. More simply stated, fatigue cracking 56 
is damage occurring in the asphalt mixture due to the repeated or cyclic loading associated to traffic (Adhikari et al., 57 
2009). 58 

Once the crack develops, continued traffic loading, along with other factors, will promote propagation of the 59 
crack to the pavement surface which can then be observed as a longitudinal crack (in the direction of traffic). With 60 
additional traffic loading, and the combined action of the environment, material properties, and pavement structure, 61 
interconnected cracks start to develop (Zhou et al., 2007). From Miller and Bellinger (2003), fatigue cracking 62 
“begins as a series of interconnected cracks in early stages, and develops into many-sided, sharp-angled pieces 63 
(usually less than 0.3 m on the longest side) characteristically with an alligator pattern in later stages.” Based on the 64 
Distress Identification Manual for the Long Term Pavement Performance (LTPP) Program (2003), fatigue cracking 65 
can be classified into three severity levels: i) Low – the cracked area has none to few interconnected cracks (no 66 
spalling and no sealed cracks) and pumping is not evident, ii) Moderate – the cracked area shows interconnected 67 
cracks forming a pattern with no signs of pumping (slight spalling and cracks may be sealed), and iii) High – the 68 
cracked area shows significantly spalled interconnected cracks in obvious pattern with signs of pumping and 69 
movement due to traffic (cracks might be sealed). 70 

Fatigue cracking is a major distress type in flexible pavement structures and is dominant under intermediate 71 
temperatures (Wen and Bahia, 2009).  Accordingly, proper modeling of this distress type needs to be ensured so that 72 
the design predictions are achieved within a small acceptable confidence interval. However, this is challenging 73 
because many of the input parameters that are needed for the cracking analysis are difficult to obtain and because the 74 
fatigue cracking mechanism is still not completely understood (Molenaar, 2007). 75 

Finally, proper predictions of remaining service life are fundamental in developing an adequate pavement 76 
management plan (Kutay et al., 2009). Furthermore, even though fatigue cracking is a structural type of failure, it 77 
will generally be associated with a loss in serviceability (deterioration of ride score or increase in roughness) which 78 
will also warrant maintenance or rehabilitation activities to improve the ride quality for the road users. 79 

The remainder of this paper is organized as follows: 1) a literature review, focusing on modeling fatigue 80 
cracking;2) a discussion of the econometric framework developed to model crack progression in the present study; 81 
3) the details associated to data preparation and its characteristics; 4) a discussion on the empirical results of the 82 
estimation, and 5) the paper conclusions. 83 

 84 
Modeling of Fatigue Cracking  85 
 86 

Previous research in pavement fatigue cracking can be classified into two main groups or categories: i) 87 
mechanistic-empirical models, and ii) purely empirical models. In general, both of this model types are empirical, 88 
since they are based on statistical models that are applied, under specific conditions, to properly predict or capture 89 
fatigue cracking. The main difference between these two types of models is that the purely empirical models are 90 
based solely on material, structural, traffic, and environmental properties, while the mechanistic-empirical models 91 
incorporate some type of pavement response as an input variable in the estimation of damage or cracking. 92 

Most of the mechanistic-empirical models follow some modification of the universal fatigue law (Finn, 1973; 93 
Sun et al., 2003): 94 �� = �����	
���                                                                                                                                                                              (1) 

where �corresponds to maximum tensile strain at bottom of asphalt layer, 
 corresponds to the resilient 95 
modulus (or a measure of stiffness of the asphalt mixture), �� are estimated parameters, and �� corresponds to the 96 
total number of cycles to failure due to fatigue cracking (typically defined as a function of the total pavement surface 97 
area). Additionally, in many cases the coefficients ��and �� are calibrated in the laboratory (Tseng and Lytton, 98 
1990).  99 

In the case of purely empirical models, more sophisticated econometric techniques can be applied to account 100 
for the different types of data and outputs that are generally used in developing the models. The fatigue cracking 101 
deterioration process is composed of two main components, (i) initiation and (ii) progression, and as such several 102 
empirical models have been developed to model these processes. Although some studies have looked at the process 103 
jointly (Madanat et al., 1995; Madanat and Shin, 1998), most of the previous efforts have modeled these components 104 
separately (Markow and Brademeyer, 1981; Queiroz, 1981; Hodges et al., 1975; Parsley and Robinson, 1982).  105 

More recently, the crack initiation is modeled as a hazard duration model (Paterson, 1987; Shin and Madanat, 106 
2003; Loizos and Karlaftis, 2005; Guler and Madanat, 2011). The hazard function is aimed at capturing the 107 
instantaneous probability of failure due to cracking of a pavement structure and consequently is dependent on the 108 



 

definition of failure that is used. The survival and failure functions (cumulative density function associated with 109 
failure) can be easily obtained from the hazard function. 110 

Shin and Madanat (2003) used the AASHO Road Test data to fit a Weibull hazard model where cracking was 111 
characterized in terms of traffic loading: 112 ℎ(�, �, �) = ����������(2) 
where � is a positive parameter associated with the distribution, � are estimated parameters to capture the effect of 113 
the independent variables � (thickness of surfacing, base and sub base, nominal axle load, and single or tandem 114 
axle), and � represents time to crack initiation. Guler and Madanat (2011) also developed a modification of the 115 
previous model by including the load of the truck single axle and the tandem axle as dependent variables in the 116 
model.Loizos and Karlaftis (2005) similarly fit several hazard models assuming Weibull, Exponential, Lognormal, 117 
and Logistic distributions. 118 

A model with fewer restrictions was proposed byNakat and Madanat (2008) were the failure rates were fit 119 
using semi-parametric assumptions. The non-parametric component is not limited to any specific distribution 120 
assumption. The hazard function that was used is known as the Cox hazard function.Reger et al. (2013)also fit a 121 
semi-parametric survival model where field and experimental data were combined to properly account for different 122 
factors affecting crack initiation. 123 

Based on the survival analysis approach, time to reach a given failure criteria could also be developed. 124 
However the modelsare limited to predicting the time required to reach a certain pavement condition and not the 125 
change in deterioration with time or traffic, which can be very useful for pavement design, analysis and 126 
management. 127 

Crack progression is typically modeled as a continuous variable using a statistical tool such as Ordinary Least 128 
Squares (OLS). In general, these methods are subject to selection bias introduced due to the use of non-random 129 
sample of pavements for modeling crack progression (Madanat et al., 1995). This is due to the fact that only 130 
pavement sections that present cracking are used in fitting the models. Moreover, it is important to note that the 131 
unobserved factors that influence the crack initiation for a particular section are likely to influence the crack 132 
progression, since both processes are caused by stresses and strains in the pavement structure associated with traffic 133 
loads, given specific environment, material and structural properties. In other words, it is important to allow for the 134 
presence of common unobserved factors in modeling crack initiation and crack progression.  135 

In order to account for truncation in the dataset, Madanat et al. (1995) proposed a joint discrete-continuous 136 
model to address the issues identified earlier using the dataset from World Bank’s road deterioration studies carried 137 
out in Brazil from 1975 to 1982. In their framework, (i) a discrete model is used to predict whether the section is 138 
cracked or not, and (ii) a regression model is developed for predicting the crack area conditional on the segment 139 
being cracked. The model can be expressed as follows: 140 ��∗ = ��� + !� 
�� = " 0    $%��∗ > 0 1    $%��∗ ≤ 0 ( 
)� = "��� + ��$%��∗ > 0 −$%��∗ ≤ 0 (3)( 
where ��∗ is a latent variable representing the propensity to distress initiation of pavement section $, �� is an indicator 141 
variable (�� = 1 means that cracking has initiated),)� corresponds to the cracked area, �� and �� are sets of 142 
independent variables that are used to characterize cracking, � and , are the parameters associated with the previous 143 
independent variables, and !� and �� correspond to random error terms associated with the models. The previous 144 
model can be fit using Heckman’s 2-step procedure (sequential estimation of the 2 models) or directly by means of 145 
Maximum Likelihood Estimation (MLE) if additional assumptions are made. 146 

Using the same dataset, Madanat and Shin (1998) incorporated a random effects term in Eq. (3) to account for 147 
unobserved heterogeneity of the data. Unobserved heterogeneity corresponds to unobserved factors that are specific 148 
to each pavement section, but might be different between pavement sections. Unobserved heterogeneity can be 149 
accounted for by using panel datasets (several observations through time for each pavement section). However, the 150 
developed model still has some limitations. Because of the difficulty of performing a MLE estimation with panel 151 
data, the joint model that was developed was estimated sequentially rather than simultaneously (using a 2-step 152 
procedure) and as demonstrated by Madanat et al. (1995) this results in a loss in efficiency of the parameter 153 
estimates. Furthermore, few parameters are used to characterize cracking (structural number and number of wheel 154 
passes). Another important aspect not considered in the Madanat and Shin study is the potential presence of 155 
unobserved attributes influencing the individual models (crack initiation and progression). For instance, in many 156 
pavement databases it is very difficult to clearly determine the quality of construction and materials used. These 157 



 

unobserved attributes potentially influence the likelihood of cracking or crack progression. Ignoring the moderating 158 
effect of such unobserved variables can, and in general will, result in inconsistent estimates in nonlinear models 159 
(Bhat, 2001; Chamberlain, 1980). 160 

More recently, Madanat et al. (2010) also tried to account for truncation bias, unobserved heterogeneity, and 161 
endogeneity bias (correlation between one or more of the independent variables and the error term). Since the 162 
purpose was to show the effect of the previous types of bias, the biases are accounted for by means of separate 163 
models to address each type individually, following techniques similar to those mentioned previously. The models 164 
are fit using Washington DOT PMIS data associated with overlay projects. However, no model that incorporates all 165 
these features jointly is presented. Such a model would be of great value since it would ensure that the cracking 166 
estimates are unbiased, and more importantly consistent and efficient. The use of a dynamic type model (the change 167 
in cracking is a function of cracking during the previous period) as follows was proposed: 168 
Δ)�- = ��-� + )�,-��γ + .�- + !�(4) 
where ��- are independent variables, )�,-�� is the cracking during the previous year, Δ)�- is the change in cracking 169 
between the previous and the current year, �andγ are estimated parameters that capture the effect of ��- and )�,-��, 170 
and .�- + !� correspond to unobserved factors or model error. However, it has to be noted that )�,-�� is not 171 
necessarily an exogenous variable since it is correlated with the error term!�. Consequently, use of OLS or panel 172 
data models without accounting for the previous correlation will result in biased estimates. 173 

Dong et al. (2013) employed parametric Negative Binomial and zero-inflated Negative Binomial models to 174 
simulate the initiation and progression of cracking. The models were estimated by MLE. However, because the data 175 
is pooled in order to estimate the models, the unobserved heterogeneity is not being accounted for. Additionally, 176 
models such as the Poisson and Negative Binomial regression cannot be readily applied towards fatigue cracking 177 
since they are used to predict count data. These types of models are limited to estimating the number of transverse or 178 
longitudinal cracks. 179 

The model developed in this paper follows along the lines of Madanat and Shin (1998) and Madanat et al. 180 
(2010). The model is intended to simultaneously address unobserved heterogeneity and censoring bias. At the same 181 
time it addresses the limitations highlighted above: i) the econometric model is developed to simultaneously model 182 
and estimate crack initiation and crack progression, ii) the model accounts for the effect of common unobserved 183 
attributes on the initiation and progression components, and iii) the model analyzes the influence of unobserved 184 
attributes in the individual components.  185 
 186 
Model Definition  187 

 188 
The following section introduces the model that is fit as part of this paper. The model that is developed 189 

corresponds to a class of models that is generally referred to as corner solution regression models. Corner solution 190 
regression models are used when the observed data is in general continuous, but has positive probability mass atone 191 
or more specific points (Wooldridge, 2010). In the case of a cracking model, the positive probability mass accounts 192 
for the probability that a given pavement section has not initiated cracking, prior to any cracking propagation 193 
process. Similar considerations have been applied by Madanat et al. (2002) for the calibration of the AASHO design 194 
equations. 195 

The interest of a cracking model (or set of models) should be to determine whether a pavement section has 196 
cracked, and if so, what is the amount of cracking that is observed. Therefore, mathematically the interest is in 197 
estimating 0() = 0|�) and 
()|�), where ) in this case corresponds to a measure of cracking, �corresponds to 198 
independent variables that are used to characterize cracking, 0(∙) corresponds to the probability that there is no 199 
cracking, and 
(∙) corresponds to the expected amount of cracking for a given set of conditions �. 200 

Because of the ) = 0 corner solution, the typical cracking progression model that is defined as 
()|�) =201 ��(typical OLS model), where � corresponds to the model parameters to be estimated, is biased because 202 
necessarily) ≥ 0, and therefore the expected value of  ) cannot be linear. Otherwise, there could be combinations of 203 � and � that would result in cracking values that are negative. 204 

In order to address the previous shortcomings, we can define the general structural form of the cracking 205 
statistical model as follows, 206 )�-∗ = ��-� + !�- ,         � = 1,2, … , 5 )�- = max(0, )�-∗)                                                                                                                                                                             (5) 
where )�-∗ is a latent variable or artificial construct to indicate the amount of cracking, which in reality is given by 207 )�-. The “$” indicates a specific pavement section, and the “�” represents a given time observation for each “$” 208 
section. ��- and � are as previously defined and !� are unobserved factors that are not explicitly included in ��- but 209 



 

that have an effect on )�-∗. It has been assumed that !�-~�;<=>?(0, @�). This type of model can be referred to as a 210 
Type I Tobit model (Amemiya, 1984). The model also accounts for the fact that there is heteroskedasticity in the 211 
variance associated with )�-: A()�-|��-). Heteroskedasticity means that the variance changes with ��- as is typically 212 
the case with pavement performance. 213 

Based on (5), the quantities of interest, 0() = 0|�) and 
()|�), can be defined as follows, 214 0()�- = 0|��-) = 1 − Φ(��-�/@) 
()�-|��-) = Φ(��-�/@) ∙ 
()�-|��- , )�- > 0)(6) 
where Φ(∙) is the standard Normal cumulative density function. Finally, using several properties of the Normal 215 
distribution (Wooldridge, 2010) it can be obtained that, 216 


()�-|��- , )�- > 0) = ��-� + @ DE(��-�/@)
Φ(��-�/@)F (7) 

where E(∙) is the standard Normal density function. Note that the term on the right hand side of (7) is positive for 217 
any combination of ��- and �. 218 
 219 
Unobserved Effects 220 

 221 
Up to this point we have not addressed unobserved effects in (5). To account for this section 222 

specificunobserved effects, H�, we can re-specify (5) as, 223 )�- = max(0, ��-� + H� + !�-) ,         � = 1,2, … , 5 !�-|�� , H�~�;<=>?(0, @I�)(8) 
In the previous model, H� corresponds to the latent effect (heterogeneity or individual effect) and corresponds to 224 

behavior strictly associated to group “$” (pavement section “$”). In contrast, !�- corresponds to the average random 225 
component associated with all )�- (unobserved factors that are shared by all pavement sections). 226 

To avoid imposing the random effects assumption that ��- and H� are strictly uncorrelated, it can be assumed 227 
that H�|��-~�;<=>?(K + �L�M, @N�), where @N� is the variance of >� in H� = K + �L�M + >�. Then the random effects 228 
Tobit model can be specified as follows, 229 )�- = max(0, K + ��-� + �L�M + >� + !�-) ,         � = 1,2, … , 5 !�-|�� , >�~�;<=>?(0, @I�) >�|��~�;<=>?(0, @N�)(9) 

Finally, based on the random sampleP(��- , )�-): $ = 1,2, … , �; � = 1,2, … , 5S, the K, �, M, @N�, and @I� 230 
parameters can be estimated by means of maximum likelihood estimation by maximizing the following likelihood 231 
function, 232 

ℓ = T UVP1 −Φ((K + ��-� + �L�M)/@I)S�WXYZ[\]P(1/@I)E(()�- − K − ��-� − �L�M)/@I)S�WXYZ^\]
�,-

_ E(>�)`>�
∞

�∞
(10) 

As part of the present study, the MLE estimates of the parameters were obtained by solving the previous 233 
function based on Ox programming language and using adaptive quadrature to approximate (10). 234 
 235 
Case Study  236 
 237 

The proposed models were estimated using LTPP data. The LTPP experiment, which began in 1989, contains 238 
data on pavement constructions, materials, traffic and performance. The study is composed of a number of 239 
experiments monitored at multiple locations across North America.  240 

For the purpose of this paper, 116 sections throughout 18 States of the United States we selected. The selected 241 
sections are part of the Specific Pavement Studies (SPS) experiments SPS-1 (Strategic study of structural factors for 242 
flexible pavements). The data were extracted from the LTPP Standard Data Release 25.0 (January 2011). This is 243 
consistent with the data used to estimate the deterioration models included in the Mechanistic Empirical Pavement 244 
Design Guide (MEPDG), but the data have been significantly updated to reflect the latest data available. The 245 
geographic distribution of the selected sections is shown in Figure 1;however note that at each location several 246 
LTPP sections were constructed. SPS-1 sections were selected because they have been monitored on the LTPP 247 
experiment since the moment of their initial construction during the early 1990s and as such no assumption needs to 248 
be made as to the initial condition of the pavement structure. 249 
 250 

<FIGURE 1> 251 
 252 



 

Out of all the existing SPS-1 experiment sections, the pavement sections included in the current study were 253 
selected based on the availability of the pavement section specific information that was identified by previous 254 
research studies as having an important effect on fatigue cracking, and some additional information that was 255 
considered by the authors to be relevant in modeling this distress type on pavement structures.  256 

The cracking information was obtained from the Monitoring Module of the LTPP database, specifically the 257 
fatigue cracking records. Inspections performed between 1993 and 2004 were obtained for the selected sections. A 258 
query of all the selected pavement sections produced a total of 349 individual pavement records. Therefore, the 259 
dataset consists of an unbalanced panel where on average there are approximately 3.01 observations per pavement 260 
section.  261 

 262 
Data Description 263 
 264 

The data used in the current study was obtained from the LTPP database. A description of the significant 265 
explanatory variables, and dependent variable, that were used in estimating the models follow: 266 

• a<>H��-: Area of fatigue cracking in pavement section “$” at time “�”, where � = number of years since the 267 
pavement section was initially built (and no maintenance or rehabilitation has been performed during the 268 
time “�”). By definition, crack initiation occurs at time � = �b\, where �b\ corresponds to the time after 269 
initial construction when cracking is firstdetected on the pavement surface. 270 

• 5cd �: Total thickness of the asphalt concrete layers in pavement section “$” in inches. 271 
• 5e�: Total thickness of the base layers in pavement section “$” in inches. 272 
• 5<�>�e�: Is a dummy variable which indicates whether the base layers have been treated by any means (1 273 

indicates treatment of base layer, 0 otherwise). 274 
• fa�: Percentage of asphalt binder content on bottom asphalt concrete layer in pavement section “$”. 275 
• A>�: Percentage of air voids on bottom asphalt concrete layer in pavement section “$”. 276 
• ffg55�-: Average Annual Daily Truck Traffic during year � on pavement section “$”. 277 
• 0<�H$h�-: Total annual precipitation during year “�” on pavement section “$”, in millimeters. 278 
• ij;k�-: Total annual snowfall during year “�” on pavement section “$”, in millimeters. 279 
• g>lm32�-: Total number of days during year “�” when the temperature on pavement section “$” was above 280 

32°C. 281 
• g>lm0�-: Total number of days during year “�” when the temperature on pavement section “$” was below 282 

0°C. 283 
Other variables were also evaluated, but were dropped as explanatory variablesbecause of low statistical 284 

significance and high correlation with some of the previously reported explanatory variables, for all estimated 285 
models. Some of these include the maximum annual average temperature, minimum annual average temperature, 286 
and the freeze index. 287 

 288 
Fatigue Cracking Model Estimation Results 289 
 290 

The fatigue cracking model parameters were initially estimated using OLS (same methodology followed by 291 
several research studies where censoring of the data is not considered), and by pooled tobit (corner solution 292 
regression model) while pooling the dataset. The pooling of the data means that each data observation is considered 293 
as a separate pavement section and the unobserved heterogeneity within pavement sections is not accounted for. 294 
Additionally, the fatigue cracking model was estimated taking advantage of the panel dataset that is being used by 295 
means of a random effects Tobit approach, while accounting for endogeneity due to factors that are specific to each 296 
pavement section, but do not change over time. 297 

The mathematical formulation for the estimated and analyzed models is the following: 298 
OLS: a<>H��- = ��-� + !�- ,         � = 1,2, … , 5                                                                                                                      (11) 299 
Pooled Tobit: a<>H��- = max(0, ��-� + !�-) ,         � = 1,2, … , 5                                                                                      (12) 300 
Random Effects Tobit: a<>H��- = max(0, ��-� + �L�M + >� + !�-) ,         � = 1,2, … , 5                                               (13) 301 
where ��- = W1, �, 5cd , 5e , 5<�>�e, fa, A>, ffg55, 0<�H$h, ij;k, g>lm32, g>lm0 ], �L� corresponds to the average 302 
values of ��- for each $, and �, M, >� , !�-are the parameters to be estimated. 303 

The parameter estimates (and associated standard errors shown in parenthesis with italics font), the asymptotic 304 
t-statistics, and the associated p-values for the regressions with the pooled dataset are shown in Table 1, while the 305 
random effects Tobit regression estimates and their associated t-statistics and p-values are given in Table 2. The 306 
variance estimates, as well as model fit parameters, for the three different models are shown in Table 3. 307 



 

 308 
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 316 
For the purpose of comparison, the fit of the models is shown on Figure 2. From the figure, it is clear how the 317 

predicting power is increased from the predictions as unobserved heterogeneity is considered in the estimation 318 
procedure. This also functions as an indication that the bias from the OLS model and pooled Tobit model is being 319 
reduced. Visually, the pooled Tobit approach does not seem to improve on the fit of the model as compared to the 320 
OLS model. However, note how the OLS model allows for fatigue cracking predictions to be less than 0. This has to 321 
do with the fact that the OLS model completely ignores how the data is left censored at 0 (corner solution). On the 322 
other hand, this phenomenon cannot be observed with the pooled Tobit model since it accounts for the data 323 
censoring. It is important to emphasize that, in Figure 2, the randomeffect has not been included in the prediction for 324 
comparison purpose with the other models. If the random effects were to be included, the fit of the data on the graph 325 
would improve considerably, but, as highlighted by Chu and Durango-Cohen (2008), inclusion of these section 326 
specific terms limits the use of the model to the specific conditions (ie. materials, environment) that were observed 327 
in the original dataset. However, even if the random effects terms are not included, the model will still represent the 328 
average population behavior and is consistent since the unobserved heterogeneity was considered during the 329 
estimation procedure. 330 

In general, the pooled Tobit regression provides a slightly better fit to the data, as compared to the OLS model, 331 
when the data are pooled together. This is measured by higher n-test statistics for the joint test that all the model 332 
parameters are significantly different from zero (13.06 vs. 10.58) and better correlation between the observed data 333 
and the estimated predictions, o (0.76 vs. 0.51). However, also note that the standard error associated with the OLS 334 
models are smaller, generally by an order of 3, than those obtained by the pooled Tobit estimation.  335 

Also interesting to note are the differences in the model parameters between the two models. A small 336 
difference would indicate that the effect of fatigue cracking being a censored variable has small-to-no effect on the 337 
predictions. If this were the case, the use of OLS would be appropriate in modeling this type of distress. However, 338 
significant differences between the values of the parameter estimates can be observed. This indicates that accounting 339 
for data censoring is correct, and that not considering it would produce biased and inconsistent estimates. One of the 340 
most important differences between the estimates can be observed for the case of 5<�>�e (indicates if the base 341 
layers have been asphalt treated) and A> (air void content), which the OLS model indicates as having a negative 342 
impacts on fatigue cracking, while for the case of the pooled Tobit estimates have the opposite meaning. The other 343 
important difference between estimates can be observed on ffg55 where OLS estimation indicates that an increase 344 
in truck traffic actually reduces fatigue cracking. It is clear that this is incorrect since traffic loading is one of the 345 
main factors involved in the fatigue cracking process, as can be observed from the pooled Tobit estimates. 346 

With the exception of the pooled Tobit model, the overall standard deviation for the other models is 347 
numerically similar. However, the random effects Tobit model distinguishes between the standard error associated 348 
with the population, and the variance associated with each specific pavement section (unobserved section specific 349 
attributes that are constant through time and cannot be captured by the pooled data models). This turns out to be a 350 
very important component of the model variance since it explains 22.8% of the total model variance. The average 351 
model results are shown in Figure 3. 352 
 353 

<FIGURE 3> 354 
 355 
Consequently, the panel data random effects Tobit model should be used to account for the unobserved 356 

heterogeneity that is not captured by the pooled Tobit model and the bias due to censoring that is not accounted for 357 
by the OLS model. A t-test was used on the standard deviation associated with the random effects to test the 358 
hypothesis that @I = 0, or that the pooled data models are indeed correct and the variability associated with the 359 
unobserved heterogeneity is not important. The resulting t-statistic was 3.87, which corresponds to a p-value of less 360 
than 10�� (significant at any statistical level of confidence). Therefore, the null hypothesis that there is no variability 361 
associated with unobserved heterogeneity within each pavement section can be confidently rejected. This indicates 362 
conclusively that the pooled data models are inappropriate for predicting fatigue cracking. 363 



 

Finally, the normality assumption associated with the unobserved effects !�- was also verified. A normal 364 
probability plot showing the residuals associated to the random effects Tobit model is shown on Figure 4. The figure 365 
indicates that the residuals align properly which is an indicator of normality. The assumption was also verified by 366 
means of an Anderson–Darling(AD) normality test which resulted in a value of 1.886, with an associated p-value < 367 
0.005. The AD statistics verifies that the normality assumption is adequate. 368 

 369 
<FIGURE 4> 370 

 371 
Conclusions 372 
 373 

Regardless of whether pavement design and analysis is performed by means of empirical methods or 374 
mechanistic empirical methods, the use of empirical transfer functions to characterize deterioration of the pavement 375 
structure are fundamental. Consequently, the development of such empirical deterioration models has to be based on 376 
statistically sound techniques that account for the type of data, and the properties of the data that are at hand.  377 

Based on the current study, it was clearly evidenced that the use of simple regression techniques such as OLS 378 
will result in biased estimates due to the censored nature of the dependent variable (area of fatigue cracking). The 379 
censoring, or corner solution concern, results from the fact that fatigue cracking has a lower limit of 0, and as such, 380 
negative values cannot be observed and are meaningless. This can be corrected by using a corner solution regression 381 
model to account for the nature of the dependent variable, thus removing the bias due to censoring of the data.  382 

The random effects Tobit model developed in the current study also allowed for accounting of unobserved 383 
heterogeneity. It was shown that the traditional OLS fatigue cracking model produced estimates that exhibit omitted 384 
variable bias because of heterogeneity that is present in the data because of unobserved section-specific variables. 385 
However, accounting for omitted variable bias due to unobserved heterogeneity is not only important from a merely 386 
statistical standpoint. By comparing the estimates of the OLS model and the random effects Tobit model, 387 
considerable differences can be observed in the expected effect of the different factors that have an effect on fatigue 388 
cracking.  389 

Based on the random effects Tobit model, time since the pavement section was initially open to traffic, truck 390 
traffic, the volumetric properties of the asphalt mix (air void content and asphalt binder content), and the 391 
environmental variables have the largest effect on cracking. This conclusion is similar to that obtained from the OLS 392 
model estimation, with the difference that the environment has less effect on cracking in the OLS predictions. This 393 
similarity is expected due to the importance of these variables on cracking of pavement structures. 394 

 Because the pavement fatigue cracking model, as well as any other pavement deterioration or transfer function 395 
models are developed empirically, it is imperative that modeling techniques to account for all the complexities of the 396 
data available are used. This was the purpose of the random effects Tobit model that was developed in the current 397 
study. However, it is important to note that the model is based on a specific sample obtained from the LTPP 398 
experiment. Therefore, it is important that the model be calibrated or refit as additional LTPP data becomes 399 
available, or based on a completely different dataset, for different conditions and regions, so that the unobserved 400 
factors associated with different materials, construction practices, structure types, traffic, and environment be more 401 
precisely captured. 402 
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Figure Caption List 463 
 464 
Figure 1:  Geographic distribution of selected pavement sections. 465 
 466 
Figure 2:  Predictions associated with all estimated models. 467 
 468 
Figure 3:  RE Tobit model predictions. 469 
 470 
Figure 4:  Normal probability plot forRE Tobit model residuals.  471 



 

Table 1.  Estimated Parameters and Statistics for Fatigue Cracking Model (Pooled Data) 472 
 473 

Parameter 
OLS Pooled Tobit 

Estimates 
(Std. Err.) 

t-statistic p-value 
Estimates 
(Std. Err.) 

t-statistic p-value 

Intercept -222.61  (39.12) -5.69 0.00 -605.09  (117.83) -5.14 0.00 � 3.94  (0.80) 4.91 0.00 10.73  (2.45) 4.38 0.00 5cd  0.28  (1.09) 0.26 0.80 1.63  (3.02) 0.54 0.59 5e -0.21  (0.57) -0.36 0.72 -1.5  (1.44) -1.05 0.30 5<�>�e 3.08  (4.92) 0.63 0.53 -6.22  (12.58) -0.49 0.62 fa 34.93  (7.62) 4.58 0.00 84.26  (25.21) 3.34 0.00 A> 10.96  (3.90) 2.81 0.01 -6.98  (12.57) -0.56 0.58 ffg55 -0.01  (0.01) -1.63 0.11 0.1  (0.03) 3.00 0.00 0<�H$h -0.02  (0.01) -1.65 0.10 -0.04  (0.03) -1.58 0.12 ij;k -0.01  (0.01) -0.54 0.59 -0.04  (0.03) -1.68 0.09 g>lm32 -0.12  (0.11) -1.07 0.28 -0.51  (0.36) -1.43 0.15 g>lm0 0.34  (0.10) 3.37 0.00 1.48  (0.28) 5.32 0.00 
474 



 

Table 2.  Estimated Parameters and Statistics for Fatigue Cracking Model(Considering Unobserved Effects) 475 
 476 

Parameter 
Random Effects Tobit 

Estimates 
(Std. Err.) 

t-statistic p-value 

Intercept 525.34  (256.12) 2.05 0.04 � 8.99  (2.85) 3.16 0.00 5cd  1.01  (1.87) 0.54 0.59 5e -0.93  (0.89) -1.04 0.30 5<�>�e -11.27  (8.11) -1.39 0.17 fa 71.54  (32.47) 2.20 0.03 A> -44.14  (20.39) -2.17 0.03 ffg55 -0.11  (0.04) -2.72 0.01 ffg55pppppppppp (*) 0.76  (0.08) 9.31 0.00 0<�H$h 0.11  (0.04) 2.58 0.01 0<�Hqhppppppppp (*) -0.81  (0.11) -7.72 0.00 ij;k 0.05  (0.02) 2.03 0.04 ij;kppppppp (*) -0.33  (0.06) -5.79 0.00 g>lm32 0.44  (0.32) 1.36 0.17 g>lm32pppppppppp (*) -11.15  (1.67) -6.66 0.00 g>lm0 -0.12  (0.68) -0.18 0.86 g>lm0ppppppppp (*) 0.36  (0.84) 0.44 0.66 
 477 
(*) Variables with a bar, (rp�), correspond to the mean value of the variable r�- throughout the observation period 478 

available for pavement section $.  479 



 

Table 3.  Estimates of Variance Components for All the Models 480 
 481 

Estimate OLS Pooled Tobit 
Random-Effects 

Tobit @N 33.26 62.71 32.14 @I - - 17.45 @s = t@N� + @I� - - 36.57 

R(**) 0.51 0.76 0.90 
F 10.58 13.06 24.39 

 482 
(**)  R defined as the correlation between observed and predicted values from each regression model so that 483 

parameter is comparable between models.  484 


