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Abstract: Most fatigue cracking models in use have been developed using the Ordinary Least Squares (OLS) method.
However, the fatigue cracking data (or any type of cracking data) consists of censored data since it has a lower limit
of zero. This can cause bias in the fatigue cracking model, because the data is not continuous but has positive
probability mass at zero. Additionally, when data is selected only from pavements that exhibit cracking, bias will
result because the estimates are based on a non-random sample. Moreover, bias can also be generated by
unobserved factors not included in the fatigue cracking model. This type of bias can be removed by considering the
deterioration history of each pavement section, if the unobserved factors are section-specific.

Based on an LTPP dataset consisting of SPS-1 pavement sections, the authors have modeled fatigue cracking
of pavement structures. The data were initially used in modeling fatigue cracking by means of OLS and by a corner
solution regression model (tobit) that accounts for the data censoring in fatigue cracking. The tobit model was used,
analyzing the data as pooled and also as a panel dataset (by random-effects), to check for possible bias in the model
due to unobserved heterogeneity.

The OLS fatigue cracking model exhibits several types of biases due to heterogeneity and erroneous
assumptions in the modeling process. The model estimates and test statistics used to evaluate them indicated that the
preferred fatigue cracking model was the random effects tobit model because it accounts for the censoring and
heterogeneity bias. Estimating the model by accounting for these types of bias in the data resulted in significant
changes in the effects of different parameters affecting fatigue through time.

Introduction

In current pavement design and analysis practioth bmpirical and mechanistic-empirical types ofdels
are used to characterize the performance of pavesiarctures. This is because it is not currentbggible to
characterize the behavior of pavement structurek raaterials in a completely mechanistic manner, au¢he
complexity associated in the processes that affectifferent pavement layers and the variabilggariated with
the parameters involved.

Consequently, there are many available pavemesetridetion models associated with design and aisalys
procedures throughout the United States, and wadklvEach of these models has been developed étlydal of
characterizing pavement structures under spectfadlitions. Therefore, it is of the utmost impodarto ensure
that the models that are currently used, and thees dlmat will be developed in the future, are caliqd for local
conditions and account for the different types iasband censoring that may be associated with wkd in each
one of these models.

Flexible pavements can exhibit several types afelis. Many types of distress are due to poortoai®n,
inadequate maintenance, and poor materials, arsicds the distress is not directly related to deskgowever,
there are several distress types that can be meitighrough adequate design of the pavement steudixamples of
such distress types include: (i) rutting, which alsudevelops in the initial years of the pavemsrife and then
gradually decreases to lower levels; (ii) fatigoealligator cracking that starts to develop durihg service life of
the pavement with repeated traffic loadings; aingléw temperature cracking that can occur at ame during the
pavement’s service life, due to large temperatifferdntials.

The current paper focuses on fatigue cracking.aiqular, the phenomenon of fatigue crack progoess
flexible pavements is addressed. Pavement fatigaeking is a distress mechanism that occurs mamigreas
subjected to repeated traffic loading (e.g. vehigleeel path) due to failure of the surface or blager that is
subjected to repeated tensile stresses. Fatige&icgainitiates at the bottom of the asphalt sweféor stabilized



base) where the tensile stress or strain due toafimied traffic load is maximum and therefore pobden
accumulation of damage that will eventually resulthe formation of a crack. More simply statedigae cracking
is damage occurring in the asphalt mixture duda¢orépeated or cyclic loading associated to tréfathikari et al.,
2009).

Once the crack develops, continued traffic loadadgng with other factors, will promote propagatiointhe
crack to the pavement surface which can then berebd as a longitudinal crack (in the directiortraffic). With
additional traffic loading, and the combined actafrthe environment, material properties, and panstructure,
interconnected cracks start to develop (Zhou et28107). From Miller and Bellinger (2003), fatigueacking
“begins as a series of interconnected cracks ity etages, and develops into many-sided, sharpedngieces
(usually less than 0.3 m on the longest side) dhariatically with an alligator pattern in lateages.” Based on the
Distress Identification Manual for the Long TermvBaent Performance (LTPP) Program (2003), fatigaeking
can be classified into three severity levels: iW.e the cracked area has none to few interconnemrgeks (no
spalling and no sealed cracks) and pumping is wickeat, i) Moderate — the cracked area shows datenected
cracks forming a pattern with no signs of pumpislight spalling and cracks may be sealed), andHigh — the
cracked area shows significantly spalled intercotet cracks in obvious pattern with signs of purgpand
movement due to traffic (cracks might be sealed).

Fatigue cracking is a major distress type in flexipavement structures and is dominant under irgdraie
temperatures (Wen and Bahia, 2009). Accordinglgper modeling of this distress type needs to Iseireal so that
the design predictions are achieved within a smedleptable confidence interval. However, this ialleinging
because many of the input parameters that are ddedthe cracking analysis are difficult to obtaind because the
fatigue cracking mechanism is still not completahylerstood (Molenaar, 2007).

Finally, proper predictions of remaining servicte lare fundamental in developing an adequate paveme
management plan (Kutay et al., 2009). Furthermeven though fatigue cracking is a structural typéadure, it
will generally be associated with a loss in seraibty (deterioration of ride score or increasednghness) which
will also warrant maintenance or rehabilitationiaties to improve the ride quality for the roackus.

The remainder of this paper is organized as folloWsa literature review, focusing on modeling dat
cracking;2) a discussion of the econometric fran&veteveloped to model crack progression in the girestudy;
3) the details associated to data preparation @ndharacteristics; 4) a discussion on the empirisults of the
estimation, and 5) the paper conclusions.

Modeling of Fatigue Cracking

Previous research in pavement fatigue cracking lmarclassified into two main groups or categorigs: i
mechanistic-empirical models, and ii) purely engatimodels. In general, both of this model types empirical,
since they are based on statistical models thaapéed, under specific conditions, to properlggict or capture
fatigue cracking. The main difference between these types of models is that the purely empiricaldels are
based solely on material, structural, traffic, amironmental properties, while the mechanistic-gicgd models
incorporate some type of pavement response aganvariable in the estimation of damage or cragkin

Most of the mechanistic-empirical models follow samodification of the universal fatigue law (Fifr73;
Sun et al., 2003):
Ny = kye k2E~¥s D

where ecorresponds to maximum tensile strain at bottorragghalt layerE corresponds to the resilient
modulus (or a measure of stiffness of the asphadtune), k; are estimated parameters, avjdcorresponds to the
total number of cycles to failure due to fatiguaaking (typically defined as a function of the tggavement surface
area). Additionally, in many cases the coefficiekjand k; are calibrated in the laboratory (Tseng and Lytton
1990).

In the case of purely empirical models, more sdpf@ited econometric techniques can be applied ¢owatt
for the different types of data and outputs that generally used in developing the models. Thedaticracking
deterioration process is composed of two main corapts, (i) initiation and (ii) progression, andsagh several
empirical models have been developed to model thesmesses. Although some studies have lookedegirticess
jointly (Madanat et al., 1995; Madanat and ShiQ&)9 most of the previous efforts have modeleddleEsnponents
separately (Markow and Brademeyer, 1981; Queir8811Hodges et al., 1975; Parsley and Robinsor2)198

More recently, the crack initiation is modeled dsaaard duration model (Paterson, 1987; Shin andaliat,
2003; Loizos and Karlaftis, 2005; Guler and Madargdill). The hazard function is aimed at capturtimg
instantaneous probability of failure due to cragkof a pavement structure and consequently is dkgmeron the
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definition of failure that is used. The survivaldafailure functions (cumulative density functionsasiated with
failure) can be easily obtained from the hazaratiomn.

Shin and Madanat (2003) used the AASHO Road Tdattddfit a Weibull hazard model where cracking was
characterized in terms of traffic loading:

h(t, X, B) = e "*Pyt’=1(2)
wherey is a positive parameter associated with the Bistion, 8 are estimated parameters to capture the effect of
the independent variablés (thickness of surfacing, base and sub base, noraita load, and single or tandem
axle), andt represents time to crack initiation. Guler and kfsat (2011) also developed a modification of the
previous model by including the load of the tru¢hgte axle and the tandem axle as dependent vasahl the
model.Loizos and Karlaftis (2005) similarly fit ssal hazard models assuming Weibull, Exponentiagriormal,
and Logistic distributions.

A model with fewer restrictions was proposed byNakad Madanat (2008) were the failure rates were fi
using semi-parametric assumptions. The non-parametimponent is not limited to any specific disttilon
assumption. The hazard function that was used dasvhnas the Cox hazard function.Reger et al. (2048)fit a
semi-parametric survival model where field and expental data were combined to properly accountitferent
factors affecting crack initiation.

Based on the survival analysis approach, time #&xirea given failure criteria could also be devetbpe
However the modelsare limited to predicting theetirequired to reach a certain pavement conditiah rast the
change in deterioration with time or traffic, whidan be very useful for pavement design, analysid a
management.

Crack progression is typically modeled as a cowtirsuvariable using a statistical tool such as Gmyireast
Squares (OLS). In general, these methods are suojeselection bias introduced due to the use oframdom
sample of pavements for modeling crack progres¢Madanat et al., 1995). This is due to the fact taly
pavement sections that present cracking are uséttiimy the models. Moreover, it is important tota that the
unobserved factors that influence the crack indratfor a particular section are likely to influenthe crack
progression, since both processes are causeddsgasrand strains in the pavement structure assibeiéth traffic
loads, given specific environment, material andcttiral properties. In other words, it is importamiallow for the
presence of common unobserved factors in modelimgkdnitiation and crack progression.

In order to account for truncation in the datadéadanat et al. (1995) proposed a joint discreteinanus
model to address the issues identified earlierguie dataset from World Bank’s road deteriorastudies carried
out in Brazil from 1975 to 1982. In their framewp(R a discrete model is used to predict whether gection is
cracked or not, and (ii) a regression model is tbpax for predicting the crack area conditionaltbe segment
being cracked. The model can be expressed as fallow

Zi=Wiy+uy

Z_{o ifZ; >0

ETl1 ifzr <0
X.B + €ifZ; >0

Yiz{ L —ifé.*fslo ©

whereZ; is a latent variable representing the propensityistress initiation of pavement sectigi; is an indicator
variable ¢; =1 means that cracking has initiatéfl)corresponds to the cracked ard#; and X; are sets of
independent variables that are used to charactemrdoking,y andg are the parameters associated with the previous
independent variables, and ande; correspond to random error terms associated Wihntodels. The previous
model can be fit using Heckman’s 2-step procedsegential estimation of the 2 models) or direbglymeans of
Maximum Likelihood Estimation (MLE) if additionakaumptions are made.

Using the same dataset, Madanat and Shin (1998)parated a random effects term in Eq. (3) to astéor
unobserved heterogeneity of the data. Unobserviddgeneity corresponds to unobserved factorsattgaspecific
to each pavement section, but might be differettvben pavement sections. Unobserved heterogenaitybe
accounted for by using panel datasets (severahadisens through time for each pavement sectiomwever, the
developed model still has some limitations. Becaafsthe difficulty of performing a MLE estimationitlu panel
data, the joint model that was developed was estiunaequentially rather than simultaneously (using-step
procedure) and as demonstrated by Madanat et @5)1this results in a loss in efficiency of thergraeter
estimates. Furthermore, few parameters are usedamacterize cracking (structural number and nundtbevheel
passes). Another important aspect not considerethénMadanat and Shin study is the potential preseaf
unobserved attributes influencing the individualdeis (crack initiation and progression). For insgnin many
pavement databases it is very difficult to cleadBtermine the quality of construction and materisded. These
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unobserved attributes potentially influence thelitkood of cracking or crack progression. Ignorihg moderating
effect of such unobserved variables can, and ireigmwill, result in inconsistent estimates in ninear models
(Bhat, 2001; Chamberlain, 1980).

More recently, Madanat et al. (2010) also triech¢oount for truncation bias, unobserved heterogyenand
endogeneity bias (correlation between one or mdérth® independent variables and the error termceithe
purpose was to show the effect of the previousgypiebias, the biases are accounted for by measemdrate
models to address each type individually, followteghniques similar to those mentioned previoushe models
are fit using Washington DOT PMIS data associatél averlay projects. However, no model that incogies all
these features jointly is presented. Such a modelldvbe of great value since it would ensure that dracking
estimates are unbiased, and more importantly demsiand efficient. The use of a dynamic type mdthel change
in cracking is a function of cracking during theyious period) as follows was proposed:

AYy = XyB + Y1y + vy +u(4)

whereX;, are independent variablé$,_, is the cracking during the previous yeA¥;, is the change in cracking
between the previous and the current yBandy are estimated parameters that capture the effeXf, andY;,_,,
and v, +u; correspond to unobserved factors or model errawéver, it has to be noted th#t,_, is not
necessarily an exogenous variable since it is tzde@ with the error term. Consequently, use of OLS or panel
data models without accounting for the previouselation will result in biased estimates.

Dong et al. (2013) employed parametric NegativeoBiral and zero-inflated Negative Binomial models to
simulate the initiation and progression of crackihbe models were estimated by MLE. However, bezdlus data
is pooled in order to estimate the models, the senked heterogeneity is not being accounted fodithahally,
models such as the Poisson and Negative Binomiméssion cannot be readily applied towards fatig@eking
since they are used to predict count data. Thesestgf models are limited to estimating the nunaféransverse or
longitudinal cracks.

The model developed in this paper follows along lthes of Madanat and Shin (1998) and Madanat .et al
(2010). The model is intended to simultaneouslyrestsl unobserved heterogeneity and censoring biabefsame
time it addresses the limitations highlighted abdy¢he econometric model is developed to simdtarsly model
and estimate crack initiation and crack progressigrthe model accounts for the effect of commarlserved
attributes on the initiation and progression congeis, and iii) the model analyzes the influencaudbserved
attributes in the individual components.

M odel Definition

The following section introduces the model thaffiisas part of this paper. The model that is depetb
corresponds to a class of models that is generalérred to as corner solution regression modedsn€ solution
regression models are used when the observeddat@éneral continuous, but has positive prolighiliass atone
or more specific points (Wooldridge, 2010). In ttese of a cracking model, the positive probabitigss accounts
for the probability that a given pavement secti@s mot initiated cracking, prior to any crackingmagation
process. Similar considerations have been appliedddanat et al. (2002) for the calibration of k&SHO design
equations.

The interest of a cracking model (or set of modsig)uld be to determine whether a pavement sebtisn
cracked, and if so, what is the amount of crackimaf is observed. Therefore, mathematically therést is in
estimatingP (Y = 0|X) andE(Y|X), whereY in this case corresponds to a measure of crackingrresponds to
independent variables that are used to characteraeking, P(-) corresponds to the probability that there is no
cracking, andt (*) corresponds to the expected amount of cracking ffiven set of condition.

Because of th& = 0 corner solution, the typical cracking progressinadel that is defined aB(Y|X) =
XpB(typical OLS model), wherg8 corresponds to the model parameters to be estimagebiased because
necessarily = 0, and therefore the expected valueYotannot be linear. Otherwise, there could be coatlins of
X andp that would result in cracking values that are tiega

In order to address the previous shortcomings, are define the general structural form of the cnagki
statistical model as follows,

YL: = XitB + Uit t = 1,2, ,T

Y = max(0, ;) (5)
whereY;; is a latent variable or artificial construct talicate the amount of cracking, which in realitygigsen by
Y;;. The 1" indicates a specific pavement section, and ttferépresents a given time observation for eath “
section.X;; andp are as previously defined andare unobserved factors that are not explicitiyuded inX;, but
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that have an effect ofj;. It has been assumed that~Normal(0,c?). This type of model can be referred to as a
Type | Tobit model (Amemiya, 1984). The model atsmounts for the fact that there is heteroskedsstit the
variance associated witfy: V (Y;.|X;.). Heteroskedasticity means that the variance clsamgb X;, as is typically
the case with pavement performance.

Based or(5), the quantities of intere®,(Y = 0|X) andE(Y|X), can be defined as follows,
P(Yy; =0|Xy) =1 - O(X;.B/0)
E(Yie|Xi) = Xy B/0) - E(Yie|Xit, Yie > 0)(6)
where ®(+) is the standard Normal cumulative density functiBmally, using several properties of the Normal
distribution (Wooldridge, 2010) it can be obtairikdlt,

B ¢(XiB/0)
E(YelXi, Yie > 0) = Xy + 0 [@(X—ﬁ/a)] @

where¢(+) is the standard Normal density function. Note thatterm on the right hand side (%) is positive for
any combination oX;, andp.

Unobserved Effects

Up to this point we have not addressed unobserviéecte in (5). To account for this section
specificunobserved effects, we can re-speciff5) as,
Yie = max(0,X;; B+ c; +uy), t=12,..,T
ui|X;, c;~Normal(0,52)(8)

In the previous modet; corresponds to the latent effect (heterogeneiipaividual effect) and corresponds to
behavior strictly associated to grougj {pavement sectioni"). In contrast,u;, corresponds to the average random
component associated with &)} (unobserved factors that are shared by all pavessations).

To avoid imposing the random effects assumptioh Xpaandc; are strictly uncorrelated, it can be assumed
that ¢;|X;;~Normal () + X;&,02), wherea? is the variance of;; in ¢; = ¥ + X;& + a;. Then the random effects
Tobit model can be specified as follows,

Y = max(0, + X, B+ X;&§+a; +uy), t=12,..,T
ui|X;, a;~Normal (0, 02)
a;|X;~Normal(0,52)(9)

Finally, based on the random sanf}, Y;):i=12,..,N;t=12,..,T}, the ¢, B, § ¢2, and ¢?
parameters can be estimated by means of maximwtihlilod estimation by maximizing the following likeood
function,

- | []—[{1 — O + XiB + XD/ e(1/0,) (Y =¥ = XieB = Xi)/0.)Y )| g (ap)day (10)

As part of the present study, the MLE estimatedhef parameters were obtained by solving the previou
function based on Ox programming language and usilagtive quadrature to approximate (10).

Case Study

The proposed models were estimated using LTPP @a&aLTPP experiment, which began in 1989, contains
data on pavement constructions, materials, tradfic performance. The study is composed of a nurober
experiments monitored at multiple locations acidesth America.

For the purpose of this paper, 116 sections through8 States of the United States we selected s&éleeted
sections are part of the Specific Pavement StU@ES) experiments SPS-1 (Strategic study of straicfactors for
flexible pavements). The data were extracted froemiTPP Standard Data Release 25.0 (January 20hi).is
consistent with the data used to estimate the idedtion models included in the Mechanistic EmgaitiPavement
Design Guide (MEPDG), but the data have been stgmfly updated to reflect the latest data avadlafilhe
geographic distribution of the selected sectionshiswn in Figure 1;however note that at each looaseveral
LTPP sections were constructed. SPS-1 sections sedested because they have been monitored onTR® L
experiment since the moment of their initial constion during the early 1990s and as such no assumpeeds to
be made as to the initial condition of the pavenstnicture.

<FIGURE 1>
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Out of all the existing SPS-1 experiment sectidghs, pavement sections included in the current stuere
selected based on the availability of the pavensection specific information that was identified psevious
research studies as having an important effectatigue cracking, and some additional informatioat tivas
considered by the authors to be relevant in modelis distress type on pavement structures.

The cracking information was obtained from the Morihg Module of the LTPP database, specifically th
fatigue cracking records. Inspections performedvben 1993 and 2004 were obtained for the seleeetibas. A
query of all the selected pavement sections pratlaceéotal of 349 individual pavement records. Tfees the
dataset consists of an unbalanced panel where enage there are approximately 3.01 observationpaezment
section.

Data Description

The data used in the current study was obtaineah fitte LTPP database. A description of the significa

explanatory variables, and dependent variable viea¢ used in estimating the models follow:

* Crack;: Area of fatigue cracking in pavement sectidhdt time “t”, wheret = number of years since the
pavement section was initially built (and no mamaece or rehabilitation has been performed dutteg t
time “t”). By definition, crack initiation occurs at time= t.,, wheret,, corresponds to the time after
initial construction when cracking is firstdetectauthe pavement surface.

* Ty, Total thickness of the asphalt concrete layepavement section™in inches.

* Tg,: Total thickness of the base layers in pavemericsets” in inches.

» Treatg,;: Is a dummy variable which indicates whether theeblayers have been treated by any means (1
indicates treatment of base layer, 0 otherwise).

e AC;: Percentage of asphalt binder content on bottoraisponcrete layer in pavement sectioh “

* Va;: Percentage of air voids on bottom asphalt cond¢agt in pavement section™

e AADTT;: Average Annual Daily Truck Traffic during yeaion pavement sectioni™
» Precip;: Total annual precipitation during year ‘on pavement section™, in millimeters.
* Snowy,: Total annual snowfall during yeat™on pavement section™, in millimeters.
» Days32;: Total number of days during year"‘when the temperature on pavement sectiirwas above
32°C.
* Days0;: Total number of days during year”‘when the temperature on pavement sectidrwas below
0°C.
Other variables were also evaluated, but were drdpgs explanatory variablesbecause of low statlstic
significance and high correlation with some of freviously reported explanatory variables, for edtimated
models. Some of these include the maximum annusdage temperature, minimum annual average temperatu

and the freeze index.

0

Fatigue Cracking Model Estimation Results

The fatigue cracking model parameters were injtiabtimated using OLS (same methodology followed by
several research studies where censoring of the idahot considered), and by pooled tobit (corrgut®n
regression model) while pooling the dataset. Thalipg of the data means that each data observiiconsidered
as a separate pavement section and the unobsegtedeneity within pavement sections is not actlifor.
Additionally, the fatigue cracking model was estiethtaking advantage of the panel dataset thatirgghused by
means of a random effects Tobit approach, whil@aeting for endogeneity due to factors that areifipeto each
pavement section, but do not change over time.

The mathematical formulation for the estimated andlyzed models is the following:

OLS: Crack;; = X;: B + uyy, t=12,..T (11)
Pooled TobitCrack;; = max(0, X;:B + u;;), t=12,..,T (12)
Random Effects Tobi€rack;, = max(0, X;.8 + X;& + a; + u;,), t=12,..,T (13)

whereX;, = [1,t,Tyc, Tg, Treaty, AC,Va, AADTT, Precip, Snow, Days32, Days0 |, X; corresponds to the average
values ofX;, for eachi, andp, &, a;, u;.are the parameters to be estimated

The parameter estimates (and associated standard shown in parenthesis with italics font), tlsgraptotic
t-statistics, and the associated p-values for ¢igeessions with the pooled dataset are shown iteThbwhile the
random effects Tobit regression estimates and tmspciated t-statistics and p-values are givehalnle 2. The
variance estimates, as well as model fit paramefiershe three different models are shown in T&ble
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<FIGURE 2>
<TABLE 1>
<TABLE 2>
<TABLE 3>

For the purpose of comparison, the fit of the medgIlshown on Figure 2. From the figure, it is cleaw the
predicting power is increased from the predicti@ssunobserved heterogeneity is considered in ttimaon
procedure. This also functions as an indication tha bias from the OLS model and pooled Tobit nhdsldeing
reduced. Visually, the pooled Tobit approach dassseem to improve on the fit of the model as caegdo the
OLS model. However, note how the OLS model alloarsfétigue cracking predictions to be less thamtis has to
do with the fact that the OLS model completely igggohow the data is left censored at 0 (cornettisolu On the
other hand, this phenomenon cannot be observed thvthpooled Tobit model since it accounts for tlaad
censoring. It is important to emphasize that, guFeé 2, the randomeffect has not been includeddrptediction for
comparison purpose with the other models. If tmelom effects were to be included, the fit of theadan the graph
would improve considerably, but, as highlighted ®yu and Durango-Cohen (2008), inclusion of thesgicre
specific terms limits the use of the model to thedific conditions (ie. materials, environment)ttixeere observed
in the original dataset. However, even if the randffects terms are not included, the model will stpresent the
average population behavior and is consistent stheeunobserved heterogeneity was considered duhag
estimation procedure.

In general, the pooled Tobit regression provideBghtly better fit to the data, as compared toGhes model,
when the data are pooled together. This is measwedidgherF-test statistics for the joint test that all thedab
parameters are significantly different from zer8.0b vs. 10.58) and better correlation betweerotteerved data
and the estimated predictiors,(0.76 vs. 0.51). However, also note that the stech@rror associated with the OLS
models are smaller, generally by an order of 3) thase obtained by the pooled Tobit estimation.

Also interesting to note are the differences in thedel parameters between the two models. A small
difference would indicate that the effect of fatgeracking being a censored variable has smalbteffect on the
predictions. If this were the case, the use of @ldsild be appropriate in modeling this type of diss. However,
significant differences between the values of theameter estimates can be observed. This indit@ésccounting
for data censoring is correct, and that not comsidat would produce biased and inconsistent eati®. One of the
most important differences between the estimatesbeaobserved for the case Bfeaty (indicates if the base
layers have been asphalt treated) &nd(air void content), which the OLS model indicatsshaving a negative
impacts on fatigue cracking, while for the casehaf pooled Tobit estimates have the opposite mgaiiine other
important difference between estimates can be vbd@nAADTT where OLS estimation indicates that an increase
in truck traffic actually reduces fatigue crackingis clear that this is incorrect since traff@atling is one of the
main factors involved in the fatigue cracking presieas can be observed from the pooled Tobit etgtfna

With the exception of the pooled Tobit model, theemll standard deviation for the other models is
numerically similar. However, the random effectshitanodel distinguishes between the standard exssociated
with the population, and the variance associatdtl each specific pavement section (unobservedosespecific
attributes that are constant through time and dabeaaptured by the pooled data models). Thisstout to be a
very important component of the model variance esiih@xplains 22.8% of the total model variancee Hverage
model results are shown in Figure 3.

<FIGURE 3>

Consequently, the panel data random effects Tobilelhshould be used to account for the unobserved
heterogeneity that is not captured by the poolebitTmodel and the bias due to censoring that isacobunted for
by the OLS model. A t-test was used on the standandation associated with the random effects &1 tke
hypothesis that,, = 0, or that the pooled data models are indeed comedtthe variability associated with the
unobserved heterogeneity is not important. Theltiagu-statistic was 3.87, which corresponds fo-@alue of less
than10~2 (significant at any statistical level of confide)cTherefore, the null hypothesis that there isamability
associated with unobserved heterogeneity withim ggvement section can be confidently rejecteds rdicates
conclusively that the pooled data models are inameite for predicting fatigue cracking.



364

419

Finally, the normality assumption associated whlk unobserved effects;; was also verified. A normal
probability plot showing the residuals associatethe random effects Tobit model is shown on Figur€he figure
indicates that the residuals align properly whiglan indicator of normality. The assumption wa® alerified by
means of an Anderson-Darling(AD) normality testethiesulted in a value of 1.886, with an associatedlue <
0.005. The AD statistics verifies that the nornyadissumption is adequate.

<FIGURE 4>
Conclusions

Regardless of whether pavement design and anaiysigerformed by means of empirical methods or
mechanistic empirical methods, the use of empiti@aisfer functions to characterize deterioratibthe pavement
structure are fundamental. Consequently, the dpusdmt of such empirical deterioration models hasetdased on
statistically sound techniques that account fortyipe of data, and the properties of the dataghaat hand.

Based on the current study, it was clearly eviddrtbat the use of simple regression techniques asdbLS
will result in biased estimates due to the censoidre of the dependent variable (area of fatigaeking). The
censoring, or corner solution concern, results fthenfact that fatigue cracking has a lower linfiDpand as such,
negative values cannot be observed and are measimdrhis can be corrected by using a corner salugigression
model to account for the nature of the dependemabie, thus removing the bias due to censorinthefdata.

The random effects Tobit model developed in theenirstudy also allowed for accounting of unobseérve
heterogeneity. It was shown that the traditionaBdatigue cracking model produced estimates thaibéxomitted
variable bias because of heterogeneity that isepteis the data because of unobserved sectionfgpeariables.
However, accounting for omitted variable bias due@nobserved heterogeneity is not only importaminfia merely
statistical standpoint. By comparing the estimadésthe OLS model and the random effects Tobit model
considerable differences can be observed in theateg effect of the different factors that havestfact on fatigue
cracking.

Based on the random effects Tobit model, time stheepavement section was initially open to traffiack
traffic, the volumetric properties of the asphaltxnfair void content and asphalt binder content)d ahe
environmental variables have the largest effeatrawking. This conclusion is similar to that ob&rfrom the OLS
model estimation, with the difference that the emwiment has less effect on cracking in the OLS iptieds. This
similarity is expected due to the importance oktheariables on cracking of pavement structures.

Because the pavement fatigue cracking model, #sas@ny other pavement deterioration or tranfsfection
models are developed empirically, it is imperativet modeling techniques to account for all the plexities of the
data available are used. This was the purposeeofaihdom effects Tobit model that was developetthéncurrent
study. However, it is important to note that thedelois based on a specific sample obtained fromL{fieP
experiment. Therefore, it is important that the elode calibrated or refit as additional LTPP datcdmes
available, or based on a completely different data®r different conditions and regions, so tha tinobserved
factors associated with different materials, carddton practices, structure types, traffic, andiemment be more
precisely captured.
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Geographic distribution of selected pavement sestio
Predictions associated with all estimated models.
RE Tobit model predictions.

Normal probability plot forRE Tobit model residuals



472 Table1.
473

Estimated Parameters and Statistics for Fatiguek@rgq Model (Pooled Data)

Pooled Tobit

Parameter (E;grrgtres); t-statistic  p-value gj'mgﬁ t-statistic  p-value
Intercept -222.6130.12) -5.69 0.00 -605.091(7.83) -5.14 0.00
t 3.94 0.80) 491 0.00 10.732(45) 4.38 0.00
Tyc 0.28 (.09) 0.26 0.80 1.63302) 0.54 0.59
Ty -0.21 0.57) -0.36 0.72 -1.5 1(44) -1.05 0.30
Treaty 3.08 @.92) 0.63 0.53 -6.22 1@.58) -0.49 0.62
AC 34.93 (.62) 4,58 0.00 84.262p.21) 3.34 0.00
Va 10.96 B.90) 2.81 0.01 -6.98 12.57) -0.56 0.58
AADTT -0.01 0.01) -1.63 0.11 0.1 q.03) 3.00 0.00
Precip -0.02 0.01) -1.65 0.10 -0.04 0(03) -1.58 0.12
Snow -0.01 0.0 -0.54 0.59 -0.04 Q(03) -1.68 0.09
Days32 -0.12 0.11) -1.07 0.28 -0.510(36) -1.43 0.15
Days0 0.34 (0.10) 3.37 0.00 1.48 ((28) 5.32 0.00

474



475 Table 2. Estimated Parameters and Statistics for Fatiguek@rg Model(Considering Unobserved Effects)

476
Random Effects Tobit

Parameter (E;grrgtres); t-statistic ~ p-value
Intercept 525.34 266.12) 2.05 0.04

t 8.99 @.85) 3.16 0.00

Tyc 1.01 .87) 0.54 0.59

Ty -0.93 0.89) -1.04 0.30
Treaty -11.27 8.11) -1.39 0.17
AC 71.54 B2.47) 2.20 0.03
Va -44.14 0.39) -2.17 0.03
AADTT -0.11 0.04) -2.72 0.01
AADTT (*) 0.76 0.08) 9.31 0.00
Precip 0.11 Q.04) 2.58 0.01
Precip (*) -0.81 (0.11) -7.72 0.00
Snow 0.05 0.02) 2.03 0.04
Snow (*) -0.33 0.06) -5.79 0.00
Days32 0.44 0.32) 1.36 0.17
Days32 (*¥) -11.15 (.67) -6.66 0.00
Days0 -0.12 0.68) -0.18 0.86
Days0 (*) 0.36 (0.84) 0.44 0.66

477

478 (¥ Variables with a bar(X;), correspond to the mean value of the variajethroughout the observation period

479 available for pavement section



480 Table 3. Estimates of Variance Components for All the Models
481

Estimate oLS Pooled Tobit Randgr;;ﬁffects
Oq 33.26 62.71 32.14
Tu - - 17.45
Oy = 0g + 0} - - 36.57
R(™) 0.51 0.76 0.90
F 10.58 13.06 24.39

482
483 (**) R defined as the correlation between observed asdigied values from each regression model so that
484 parameter is comparable between models.



