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ABSTRACT 1 
Various dynamic modulus (E*) predictive models have been developed to estimate E* as an alternative to 2 
laboratory testing. The most widely used model is the 1999 I-37A Witczak predictive equation based on 3 
North American mixtures laboratory results. The differences in material properties, traffic information, 4 
and environmental conditions for Latin American countries make it necessary to calibrate these models 5 
using local conditions. Consequently, the National Laboratory of Materials and Structural Models at the 6 
University of Costa Rica (in Spanish, LanammeUCR) has previously performed a local calibration of this 7 
model based on E* values for different types of Costa Rican mixtures. However, further research has 8 
shown that there is still room for improvement in the accuracy of the calibrated model (Witczak-9 
Lanamme model) based on advanced regression techniques such as artificial neural networks (ANN).  10 

The objective of this study was to develop an improved and more effective dynamic modulus E* 11 
predictive regression model for mixtures in Costa Rica by means of ANN based models. A comparison of 12 
the predicted E* values among the Witczak model, Witczak-Lanamme model and the new and improved 13 
model based on artificial neural networks (ANN-Lanamme model) indicated that the former not only met 14 
the model adequacy checking criteria but also exhibited the best goodness of fit parameters and the lowest 15 
overall bias. The findings of this study also supported the use of more advanced regression techniques 16 
that can become a more attractive alternative to local calibration of the Witczak I-37A equation. 17 
 18 
 19 
  20 
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INTRODUCTION 1 
The most important asphalt concrete mixture property influencing the structural response of a flexible 2 
pavement is the dynamic modulus (E*). For a specific mixture, temperature, rate of loading and aging 3 
significantly influence this property. E* is also the primary hot-mix asphalt (HMA) material property 4 
input at all three hierarchical levels in the new mechanistic empirical pavement design guide (MEPDG) 5 
(ARA, 2004).  6 

Various E* predictive models have been developed to estimate E* as an alternative to laboratory 7 
testing. The most widely used model is the 1999 I-37A Witczak predictive model based on conventional 8 
multivariate regression analysis of laboratory test data. Because of this, the Witczak model has been 9 
evaluated using many different datasets and has been calibrated to several regions. However, use of the 10 
model with no calibration for local mixtures should be limited. 11 

A study by the University of Minnesota (on mixtures from four cells at Mn/ROAD) found that the 12 
Witczak predictive equation fitted the data relatively well in some locations at intermediate and low 13 
temperatures, but for other locations the differences were significant (Clyne et al., 2003). This study 14 
concluded that the Witczak equation should be used with caution and that further research was needed to 15 
validate the Witczak equation for mixtures typically used in Minnesota. 16 

A study at the University of Florida (Birgisson et al. 2005), evaluated the Witczak predictive 17 
equation for 28 mixtures typical to Florida. Overall, it was found that the Witczak predictive equation 18 
resulted in a slight bias for the mixtures investigated. However, the results also allow for a correction of 19 
the bias between predicted and measured E* by means of statistical calibration. It was also found that E* 20 
predictions at higher temperatures generally were closer to measured values than predictions at lower 21 
temperatures, suggesting that the database used to develop the Witczak model could be restricted to 22 
predicting the modulus of mixtures tested at higher temperatures, or that, for the mixtures studied, the 23 
sigmoidal function used may produce slightly biased E* values at lower temperatures. Finally, it was 24 
concluded that when testing results are not available, reliable first order estimates of E* for mixtures 25 
typical to Florida can be obtained with the Witczak predictive equation, by applying a correction factor 26 
obtained from the testing of local mixtures. 27 

In a study by North Carolina State University (Kim et al., 2005), 41 mixtures commonly used in 28 
North Carolina were used to evaluate the prediction accuracy of the Witczak model and the influence of 29 
some mixture variables in the prediction of E*. The study showed that Witczak’s predictions for cooler 30 
temperatures were better than at warmer temperatures. This is the opposite of what was observed in 31 
Florida and thus highlights the importance of proper calibration. 32 

A study by Schwartz (2005) at the University of Maryland evaluated the accuracy and robustness 33 
of the Witczak predictive equation through a set of sensitivity and validation analyses, using the same 34 
database with which the Witczak model was calibrated, plus an independent set of laboratory E* test data 35 
for 26 other mixtures. The validation of the Witczak model against the independent set of data showed an 36 
agreement between predicted and measured E* values that was nearly as good as for the calibration data 37 
set, but with a slight positive bias (predicted values were generally higher than the measured data) which 38 
was higher for lower stiffness/higher temperature conditions.  39 

The University of Arkansas study on 12 different mixtures showed a good correlation between 40 
the Witczak predicted E* values and those measured in the laboratory (Tran and Hall, 2005). The 41 
goodness-of-fit statistics showed that the prediction of E* for the mixtures used in the study ranged from 42 
very good to excellent, according to the subjective criteria used. However, the A and VTS parameters 43 
used in the Witczak predictive equation were the default values proposed in the MEPDG and not directly 44 
calculated. 45 

The Louisiana Transportation Research Center conducted a study on two 25-mm Superpave 46 
mixtures with two different binder types to compare two simple performance tests, performed in two 47 
laboratories (Mohammad, 2005). The prediction capability of the Witczak model was also evaluated.  It 48 
was also found that the E* can provide consistent results for plant-produced mixtures. Another finding 49 
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was that the E* was sensitive to different binder contents in the mixture. They concluded that the Witczak 1 
model can predict E* values with a reasonable reliability. 2 

Another study developed by Dongré et al. (2005) showed that the Witczak model was able to 3 
produce reasonable predictions of dynamic modulus when compared to data from mixtures tested in 4 
laboratory. However, they also found that both models needed to be corrected or refined to more 5 
accurately predict E* values from production samples. Currently, the model under-predicts E* values 6 
when higher binder contents or air voids than those indicated by the mix design are used in production 7 
samples.  8 

Robbins and Timm (2011), evaluated three E* predictive models (Witczak 1-37A, Witczak 1-9 
40D, and Hirsch) with the use of 18 HMA plant-produced, lab-compacted mixtures (representative of 10 
general-use mixtures used in the southeastern United States) that were placed at the 2006 National Center 11 
for Asphalt Testing Test Track. The Hirsch model for estimating HMA modulus is based on a law of 12 
mixtures for composite materials (Christensen et al., 2003) which utilizes the shear modulus of the 13 
binder, G*, and volumetric properties of the mix to predict E*. E* predictions were made at three 14 
temperatures and three frequencies for direct comparison with measured values. The Witczak models had 15 
the greatest deviation from measured values, and the Witczak 1-40D model overestimated E* by 16 
approximately 61%. The Hirsch model most accurately predicted the moduli for the 2006 Test Track 17 
mixtures. 18 

Singh et al. (2011) also evaluated the Witczak I-37A model for their use in estimating the 19 
dynamic modulus of selected HMA mixtures that are commonly used in Oklahoma. The performance of 20 
the predictive model was evaluated by three approaches: goodness-of-fit statistics, comparison of the 21 
measured and predicted values, and local bias statistics (slope, intercept, and average error). Analyses of 22 
the results showed that the predictive power of the model varied with the temperature and air void levels 23 
of a compacted specimen. A calibration factor was developed for the model to obtain an accurate estimate 24 
of dynamic modulus. This calibration was considered helpful for Level 2 and Level 3 designs of the 25 
Mechanistic–Empirical Pavement Design Guide (MEPDG). 26 

El-Badawy et al. (2012), evaluated the influence of the binder characterization input level on the 27 
performance of the MEPDG E* predictive models. 27 HMA mixtures commonly used in Idaho were 28 
investigated. Results showed that the performance of the investigated models varies based on the 29 
temperature and the binder characterization method. The NCHRP 1-37A E* model along with MEPDG 30 
level 3 binder inputs yielded the most accurate and least biased E* estimates. The accuracy of this model 31 
was further enhanced by introducing a local calibration factor. 32 

In the case of Costa Rica, a similar analysis was performed to ensure that the Witczak model 33 
could be readily applied to local mixtures (Loria et al., 2011). The Witczak model was identified to 34 
produce slightly biased predictions of E* when compared to several gradations, mostly of typical use in 35 
the Country. As was the case with some of the previous studies, the model showed positive bias at higher 36 
stiffness/lower temperature conditions. Consequently, a calibrated Witczak model was fitted using 37 
nonlinear regression. 38 

Far et al. (2009), presented the outcomes from a research effort to develop models for estimating 39 
the dynamic modulus of hot-mix asphalt (HMA) layers on long-term pavement performance test sections. 40 
The goal of their study was to develop a new, rational, and effective set of dynamic modulus E* 41 
predictive models. These predictive models used artificial neural networks (ANNs) trained with the same 42 
set of parameters used in the modified Witczak and Hirsch models. Modulus values from multiple 43 
mixtures and binders were assembled from existing national efforts and from data obtained at North 44 
Carolina State University. The results show that the predicted and measured E* values were in close 45 
agreement when ANN models were used. 46 

A paper presented by Ceylan et al. (2009) discussed the accuracy and robustness of the various 47 
predictive models (Witczak I-37A and I-40D and ANN-based models) for estimating E* values. The 48 
ANN-based E* models using the same input variables exhibit significantly better overall prediction 49 
accuracy, better local accuracy at high and low temperature extremes, less prediction bias, and better 50 
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balance between temperature and mixture influences than do their ordinary least squares (OLS) 1 
regression-based counterparts. As a consequence, the ANN models as a group are better able to rank 2 
mixtures in the same order as measured E* for fixed environmental and design traffic conditions. 3 

Singh et al., (2012) developed an artificial neural network to predict dynamic modulus of twenty 4 
different HMA mixes comprised of various sources, sizes, types of aggregates, and different volumetric 5 
properties. The ANN-based model was developed considering the following input variables: aggregate 6 
shape parameters (i.e., angularity, texture, form, and sphericity), frequency, asphalt viscosity, and air 7 
voids of compacted samples. The shape parameters of different sizes of coarse and fine aggregates were 8 
measured using an automated aggregate image measurement system (AIMS). The results showed that the 9 
inclusion of aggregate shape parameters can be used as independent parameters in a model for estimating 10 
the dynamic modulus of hot mix asphalt. 11 

In summary, the I-37A Witczak predictive model has worked well in some cases and not so well 12 
in others. Calibration of this equation has also been implemented by several researchers while others 13 
decided to utilize the 2006 Witczak model or decided to adopt a different approach such as the Hirsh 14 
model. Finally, the use of more advanced regression techniques has also proven to be a more attractive 15 
alternative to calibration of the Witczak I-37A equation. 16 
 17 
OBJECTIVE 18 
The objective of this study was to develop an improved and more effective dynamic modulus E* 19 
predictive regression model for mixtures in Costa Rica by means of artificial neural network (ANN) 20 
based models. 21 
 22 
MIXTURE CHARACTERIZATION AND EVALUATION 23 
From 2007, LanammeUCR has conducted a laboratory evaluation of the applicability of the Witczak 24 
Model to a typical aggregate source and one type of asphalt binder produced in Costa Rica (Loria et al., 25 
2011). The flow chart presented in Figure 1 summarizes the experimental plan of the study. 26 
 27 
Aggregate Characterization 28 
The study involved one aggregate source (from a northeast region of the country called Guápiles). The 29 
aggregate is extruded from igneous deposits along a river. The aggregate properties are shown in Table 1. 30 
 31 
Asphalt Binder Properties 32 
In Costa Rica only one type of asphalt is produced. The binder viscosity classification corresponds to an 33 
unmodified AC-30. Based on the SUPERPAVE specification, the binder classifies as a PG64-22. The 34 
properties for the asphalt binder are shown in Table 2. 35 
 36 
Specimen Preparation 37 
Ten different types of asphalt mixtures were designed in the laboratory. Three dense graded mixtures (G1, 38 
G2 and G3) below  the “prevention zone” (also called SUPERPAVE’s restricted zone); two dense graded 39 
mixtures (G6 and G7) above the “prevention zone”; two dense graded mixtures (G4 and G5) thru the 40 
“prevention zone”; one Stone Matrix Asphalt (SMA) mixture (G9); one micro surfacing mixture (G8), 41 
and a typical plant dense graded mixture (G10). The gradations are presented in Table 3 and Figure 2.42 
 The design air void content was fixed to 4%. Two mixture design methodologies were used: Marshall 43 
and Superpave. The optimum asphalt content by dry weight of aggregate (DWA) and by total weight of 44 
mixture (TWM), voids in the mineral aggregate (VMA), the voids filled with asphalt (VFA), and the 45 
effective asphalt content (Pbe) based on both methodologies are shown in Table 4. 46 
 47 
 48 
 49 
 50 
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  1 
FIGURE 1 Flow Chart for the Experimental Plan 2 

 3 
 4 
 5 
TABLE 1 Physical Properties of the Aggregates Used in the Study. 6 

Property Test Method Value Unit Specifications 
Coarse Aggregate 

L.A. Abrasion  AASHTO T 96  21.21 % 37% max.1 

Specific Gravity AASHTO T 85  2.652  2.85 max.1 

Absorption AASHTO T 85  1.69 % 4% max.1 
Faces Fractured 

1 face ASTM D 5821 
100 % 90% min.2 

2 or more  99.8 % 75% min.2 
Fine Aggregate 

Plasticity index AASHTO T 90  NP  10% max.1 
Sand equivalent  AASHTO T 176  78  - 
Angularity AASHTO TP 304 37.2 % - 
Specific Gravity AASHTO T 84  2.549  2.85% max.1 
Absorption AASHTO T 84  3.283 % - 

1 Nevada DOT Standard Specifications for Road and Bridge Construction, 2001. 7 
2 Standard Specifications for Constructions of Roads and Bridges on Federal Highways Projects, FP-03 8 
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TABLE 2 Physical Properties of the Used Asphalt Binder. 1 
Aging State Property Unit Asphalt Binder AC-30 

Original 

Density at 25ºC g/cm3 1.030 
Absolute viscosity at 60ºC Poise 3330 
Kinematic viscosity at 125ºC centiPoise 961 
Kinematic viscosity at 135ºC centiPoise 565 
Kinematic viscosity at 145ºC centiPoise 347 
VTS, regression slope of viscosity 
temperature susceptibility 

- 3.43 

Regression intercept - 10.26 

RTFO 

Absolute viscosity at 60ºC Poise 11512 
Kinematic viscosity at 125ºC centiPoise 1712 
Kinematic viscosity at 135ºC centiPoise 938 
Kinematic viscosity at 145ºC centiPoise 550 

 2 
 3 
 4 
TABLE 3 Studied Aggregate Gradations. 5 

           
ASTM 

Sieve 

Sieve           
(mm) 

Studied Gradation 

Below the prevention 
zone 

Thru the 
prevention zone 

Above the 
prevention zone 

Micro 
(*) SMA Plant 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 
3/4 19.0 100 100 100 100 100 100 100 100 100 100 
1/2 12.5 95 100 90 95 95 98 90 100 90 95 
3/8 9.5 88 95 78 90 90 92 65 81 45 79 
N°4 4.75 37 62 40 45 70 67 45 32 28 48 
N°8 2.36 28 33 32 37 50 47 42 27 23 32 
N°16 1.18 20 23 20 29 27 32 37 22 22 22 
N°30 0.60 13 16 14 22 15 23 30 18 19 16 
N°50 0.30 9 12 9 14 8 17 20 14 16 12 
N°100 0.15 7 9 7 9 6 12 12 10 13 8 
N°200 0.075 5 7 6 6 5 8 5 8 10 5 

(*) Microsurfacing. 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
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TABLE 4 Summary Volumetric Properties of the Mix for All the Aggregate Gradations Studied. 1 

Description Gradation Mix design Va Pb (DWA) 
Pb 

(TWM) Pbe VMA VFA 

Below the 
prevention zone 

G1 
Superpave 4.0% 7.20 6.80 5.69 17.32 77.66 
Marshall 4.0% 6.41 6.02 5.18 15.74 74.66 

G2 
Superpave 4.0% 7.40 6.90 6.06 17.44 76.12 
Marshall 4.0% 6.84 6.40 5.49 16.51 75.78 

G3 
Superpave 4.0% 6.40 6.00 5.25 15.68 73.40 
Marshall 4.0% 6.01 5.67 4.83 15.15 71.93 

Thru the 
prevention zone 

G4 
Superpave 4.0% 5.50 5.30 4.31 12.14 73.20 
Marshall 4.0% 5.44 5.16 4.17 13.90 69.53 

G5 
Superpave 8.0% 7.50 7.00 6.00 20.90 61.60 
Marshall 8.8% 6.50 6.10 5.12 20.08 55.50 

Above the 
prevention zone 

G6 
Superpave 4.0% 5.50 5.20 4.35 14.10 72.10 
Marshall 4.0% 5.84 5.52 4.41 14.52 70.50 

G7 
Superpave 4.0% 5.00 4.80 3.32 12.32 63.20 
Marshall 4.0% 5.50 5.21 4.13 13.74 70.50 

Micro surfacing G8 
Superpave 4.0% 5.60 5.30 4.29 14.06 78.68 
Marshall 4.0% 5.99 5.65 4.51 14.82 71.00 

SMA G9 
Superpave 4.0% 4.90 4.70 3.74 12.44 68.86 
Marshall 4.0% 5.19 4.93 4.01 13.34 71.00 

Plant G10 
Superpave 4.0% 6.00 5.70 4.76 15.00 73.00 
Marshall 4.0% 5.65 5.35 4.46 14.50 71.10 

 2 
 3 
Dynamic Modulus of Asphalt Mixtures 4 
In order to evaluate the dynamic modulus of the different mixes, all specimens were prepared following 5 
the standard method ASTM D3496 “Practice for Preparation of Bituminous Specimens for Dynamic 6 
Modulus Testing” (ASTM, 2005). The testing was performed according to ASTM D3497 “Standard Test 7 
Method for Dynamic Modulus of Asphalt Mixtures” (ASTM, 2007) and AASHTO T 62 "Determining 8 
Dynamic Modulus of Hot Mix Asphalt" (ASTM, 2007). 9 
  The experimental design included four factors; the first factor was the gradation with the ten 10 
levels (G1, G2, G3, G4, G5, G6, G7, G8, G9 and G10), the second factor was the temperature with five 11 
levels (-5, 5, 20, 40 and 55°C), the third factor was the loading frequency with six levels (0.1, 0.5, 1, 5, 10 12 
and 25 Hz), and the fourth factor was the compaction effort with three levels (30 gyrations of the 13 
Superpave gyratory compactor (SGC), 80 gyrations of SGC, and specimens compacted with 7% air 14 
voids).  15 
 16 
Master curves  17 
The master curves and the corresponding shift factors were developed directly from the dynamic modulus 18 
tests. Microsoft Excel Solver was used to optimize the calibration coefficients. It involved nonlinear 19 
optimization using the sigmoidal function shown in Equations 1 and 2.  Both equations describe the time 20 
dependency of the modulus (The results are presented in Table 5 and Figure 2): 21 

)(log1
*

rte
ELog γβ

αδ ++
+=                                              [1] 22 

where, 23 
E*   = dynamic modulus. 24 
tr     =   time of loading at the reference temperature. 25 
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δ, α = estimated parameters; for a given set of data, δ represents the minimum value of E* and δ+α 1 
represents the maximum value of E*. 2 

β, γ = parameters describing the shape of the sigmoidal function. 3 

rt

t
Ta =)(    ,    [ ])(log)log()log( Tattr −=   [2] 4 

where, 5 
tr = time of loading at the reference temperature. 6 
t = time of loading at a given temperature of interest. 7 
a(T) = Shift factor as a function of temperature. 8 
T = temperature of interest. 9 
 10 
TABLE 5 Summary of the Fitting Parameters for the Construction of the E*  Master Curves 11 

Gradation 
Parameter 

δδδδ    αααα    ββββ    γγγγ    
G1 1.8155 2.3618 -0.5631 0.4766 
G2 1.8647 2.4533 -0.3800 0.5018 

G3 1.8542 2.3952 -0.3458 0.4784 
G4 1.8013 2.5136 -0.7055 0.4589 
G5 2.1775 1.8860 -0.1475 0.5982 
G6 1.7743 2.7039 -0.5207 0.4182 
G7 2.1687 2.3301 -0.5388 0.4960 
G8 2.0420 2.0748 -0.6264 0.5309 
G9 2.0682 2.3802 -0.6617 0.5529 
G10 1.5471 2.7260 -0.7342 0.4276 

 12 

 13 
FIGURE 2 Master Curves of Dynamic Modulus for the Gradations Used in the Study 14 
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Quality of fitted Witczak model on mixes in Costa Rica  1 
For Level 2 and Level 3 analysis, the master curves would be developed directly from the dynamic 2 
modulus Witczak I-37A predictive equation shown in equation 3. This equation is intended to predict the 3 
dynamic modulus of asphalt mixtures over a wide range of temperatures, rates of loading, and aging 4 
conditions based on information that is readily available from material specifications or volumetric design 5 
of the mixture (ARA, 2004). 6 
 7 
����∗ = 3,750063 + 0,02932���� − 0,001767������� − 0,002841�� − 0,058097�� 
 8 

−0,802208 � ���  
���  !�"# +

$,%&'(&&)�,���'*+!�,��$(,%*-.)�,����'&�*-.�/!�,��,�&�*-+
'!0�12,32--4-12,-4--5 678� �12,-9-5-/ 678�:��       [3] 9 

 10 
 11 
where: 12 
E* = dynamic modulus, psi, 13 
η = bitumen viscosity, 106 Poise, 14 
 f = loading frequency, Hz, 15 
Va = air void content, %, 16 
Vbeff = effective bitumen content, % by volume, 17 
ρ34 = cumulative % retained on the ¾ in sieve, 18 
ρ38 = cumulative % retained on the 3/8 in sieve, 19 
ρ4 = cumulative % retained on the No. 4 sieve, 20 
ρ200 = % passing the No. 200 sieve. 21 
 22 

The overestimation of E* values for mixtures in Costa Rica (Figure 4) was reported by Loría and 23 
his associates (Loría et al., 2011). The application of this model on mixtures in Costa Rica not only over 24 
predicted E* values but also failed to comply one of the assumptions of OLS regression and ANOVA: a 25 
constant variance of the error term. In the residual versus the fitted values plot, the errors should have 26 
constant variance when the residuals are scattered randomly around zero. In this case, the residuals 27 
increase or decrease with the fitted values in a pattern that looks like a funnel or uneven spreading of 28 
residuals across fitted values, the errors may not have constant variance (Figure 3). A curvilinear pattern 29 
in the residual versus fitted values plot also indicated that a higher-order term to has to be added model.  30 

 31 

  
 32 

FIGURE 3 Evaluation of the Witczak Model 33 
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As mentioned previously, the Witczak-Lanamme model was developed to adjust or calibrate the 1 
Witczak model based on the E* results of several mixtures used in Costa Rica. This new model was 2 
suggested based on a nonlinear approach that significantly improved the model fit (R2=0.9355, standard 3 
deviation of error term=1,494.4 and SSE=5.1997). The model is shown in Equation 4. 4 
 5 

2
200 200 4

2
4 38 38 34

(0,052941 0,498163log( ) 0,691856log( ))

log * 5,535833 0,002087 0,000566( ) 0,002590 0,078763

2,399557 0,000820 0,013420 0,000261( ) 0,005470
1,865947

1

a

beff

f
beff a

E V

V

V V e η

ρ ρ ρ

ρ ρ ρ ρ
− −

= + − − −

  + − + +− +  + +   [4]

 6 

 7 
The application of the Witczak-Lanamme model not only fixed the overestimation of E* values 8 

but also in the residual versus the fitted values plot, the errors had constant variance with the residuals 9 
scattered randomly around zero (Figure 4). However, further investigation showed that high errors were 10 
still obtained from some mixtures and the variance of the predictions was not uniform. Ideally, in the plot 11 
of actual E* values versus predicted ones, a small and random deviation from the line of equality is 12 
desired for all data points. As an attempt to reach this ideal scenario, the artificial neural networks (ANN) 13 
methodology was implemented using the same dataset.  14 

 15 

  
 16 

FIGURE 4 Evaluation of the Witczak-Lanamme Model 17 
 18 
Development of the ANN-Lanamme Model 19 
An artificial neural network is a massively parallel distributed processor that has a natural propensity for 20 
storing experimental knowledge and making it available for use (Priddy and Keller, 2005). Consequently, 21 
knowledge is acquired by the network through a learning (training) process; the strength of the 22 
interconnections between neurons is implemented by means of the synaptic weights used to store the 23 
knowledge. The learning process is a procedure of adapting the weights with a learning algorithm in order 24 
to capture the knowledge. In other words, the aim of the learning process is to map a given relation 25 
between inputs and outputs of the network.  26 

The learning method used to develop the ANN models was a feed-forward back propagation with 27 
the sigmoidal function, Equation 5, as the transfer function. It was found that the two-layer network with 28 
10 nodes in the hidden layer was the most appropriate for this dataset (Figure 5). The basic form of the 29 
ANN is given by Equations 5 through 7. For these equations, a single index indicates an array; dual 30 
indices represent a matrix with the first letter indicating the values in the row and the second letter 31 
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indicating the values in the column. The index 1 
the hidden layer. 2 
 3 
;�<� = �

'!01/= − 1  4 
 5 
>?
' � @?

' ∑ BC?
D
CE' FC  6 

 7 
GHIJHI � KL��∗� � ;M@N ∑DO8 
 9 
where; 10 
T = placeholder variable, 11 
>?
'	= transferred value of nodes at the hidden 12 

Pi  = input variables  (ρ200, ρ4, ρ13 
BC?  = weight factors for the hidden layer,14 
B? = weight factors for the output layer,15 
@?
'	= bias factors for first layer, 16 

B0 = bias factor for outer layer, 17 
m = number of nodes in hidden layer 18 
Ln(E*) = natural logarithm of E*19 
 20 
 21 

22 
FIGURE 23 

 24 
 25 
Model weights and bias values  26 
 27 

The following shows the weight matrices and bias vectors for the ANN28 
parameters are substituted into Equations 29 

 

indicating the values in the column. The index i represents the input parameters and

    [5] 

    [6] 

>?
'B?

D
OE' Q   [7] 

= transferred value of nodes at the hidden layer, 
ρ38, Va , Vbeff , loglog(η), temperature  and frequency)

weight factors for the hidden layer, 
= weight factors for the output layer, 

 
hidden layer  

E*. 

FIGURE 5 Schematic of training process. 

 

shows the weight matrices and bias vectors for the ANN-Lanamme model. 
parameters are substituted into Equations 5 through 7 with ρ200 = 5, ρ4 = 63, ρ38 = 12, Va = 7.41, V

12 

meters and the index k represents 

), temperature  and frequency), 

 

Lanamme model. If these 
38 = 12, Va = 7.41, Vbeff = 
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5.69, loglog(η) = 3.7859, temperature = -3.4 and frequency = 25, the predicted ln(E*) value of  9.31415 1 
and the E* value of 11,402 MPa would be calculated from this recommended model. 2 

 3 
@?' = R2.3134				4.0247				2.1380		 − 11.9793				0.3330			 − 6.3721			 − 5.0298			 − 0.2873		 − 10.6756			10.3805T 
 4 

BC? = 

-4.2794    23.2425   -4.0547  -12.9996    0.0060    8.4144   -3.4470   -0.0002    0.0118   13.7398 

-10.8394   -2.4254   -5.4623    4.0784   -0.0272   -2.1539   -7.4460    0.0250    0.0073  -17.2411 

7.5808    5.2567    7.6583  -22.1995    0.1250   -2.7495    0.8265   -0.1192   -0.0303   -5.5932 

-15.3861   26.5062   -1.7360    3.2115    0.1505    0.9341  -18.8182   -0.1521   -0.0390   -3.5607 

2.3739   -5.2556    8.2966   -4.0598    0.1879    3.7634    3.6738   -0.1812   -0.0185    5.0671 

-0.3161   -6.6774   -4.7862    0.2819    0.4871    1.6285   -0.4955   -0.4942   -1.8913    4.2234 

-0.1810  -14.1131   -8.9340    2.1166    1.3467    2.3166   -0.5999   -1.3313   -1.8068    2.0520 

0.0159    0.6328    0.4785   -0.1558   -0.3746   -0.1602    0.0106    0.3321   -8.0241    0.1222 

 5 
 6 
 7 

B? = 

0.2402 

0.0377 

0.0410 

0.0722 

6.6041 

-0.0695 

-0.2727 

7.6429 

-13.6531 

0.0456 

B0 = -13.6918 
 

 8 
The results of the application of the ANN-Lanamme model on the entire E* database are shown 9 

in Figure 6. In the plot of actual E* values versus predicted ones, a small-constant deviation from the line 10 
of equality was acquired for all data points. In addition, in the residual versus the fitted values plot, the 11 
errors had constant variance with the residuals scattered randomly around zero.  12 
 13 
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 1 

FIGURE 6 Evaluation of the ANN-Lanamme Model. 2 
 3 

The slope of the measured versus predicted curve for all three models was used to perform a bias 4 
analysis. As shown in Figure 7 the highest deviation from the line of equality in terms of the slope was 5 
obtained for the Witczak I-37A model. On average, predicted E* values were deviated from the equality 6 
line by 35%. In second place, the Witczak-Lanamme model predicted E* values with a slight deviation 7 
from the equality line (about 4%). Finally, the ANN had the lowest deviation from the line of equality 8 
with only 1%.  9 
 10 
 11 

 12 
 13 

FIGURE 7 Comparison of Predictive Models. 14 
 15 
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The accuracy of the three predictive models was also analyzed by means of goodness of fit 1 
parameters in arithmetic space. Table 6 shows the calculated parameters for all the models along with the 2 
the respective criteria. The lowest coefficient of determination (R2) in arithmetic space and the highest 3 
standard error of the estimate/standard deviation value (Se/Sy) for the Witczak model confirmed its 4 
limited ability to predict E* values for mixtures in Costa Rica. A significant improvement in the 5 
prediction of E* values, with respect to the Witczak model was obtained with the use of the Witczak-6 
Lanamme model (59% improvement in the R2 value and 29% reduction in the Se/Sy value). However, 7 
the best results were obtained for the ANN-Lanamme model with the highest R2 and lowest Se/Sy values 8 
(69% improvement in the R2 value and 77% reduction in the Se/Sy value with respect to the Witczak 9 
model). 10 
 11 

TABLE 6 Goodness of Fit Parameters 12 
Parameters Goodness of Fit (Witczak et al. 2002) 

Model R2 R2 adj. 
Se/Sy 

arithmetic Criteria R2 Se/Sy 

Witczak 0.592 0.589 0.372 Excellent > 0.90 < 0.35 
Witczak-Lanamme 0.935 0.934 0.262 Good 0.70 - .089 0.36 - 0.55 

ANN-Lanamme 0.993 0.992 0.086 Fair 0.40 - 0.69 0.56 - 0.75 
 Poor 0.20 - 0.39 0.76 - 0.90 

 13 
In summary, overestimation of E* values for Costa Rican mixtures by the Witczak I-37A model 14 

led to its local calibration (Witczak-Lanamme model). An additional model adequacy checking performed 15 
on these two models led to the construction of a new and improved model based on artificial neural 16 
networks (ANN-Lanamme model). This final model not only met the model adequacy criteria but also 17 
had the best overall goodness of fit parameters.  18 

 19 
CONCLUSIONS AND RECOMMENDATIONS 20 
Even when a local calibration of the Witczak I-37A model was performed for 10 mixtures in Costa Rica, 21 
there was still room for improvement. Further investigation showed that high errors were still obtained 22 
from some mixtures when using the calibrated model. Additionally, the data clearly indicated that 23 
calibration of the E* models, based on direct application of standard regression techniques such as OLS 24 
was not adequate since several of the assumptions made when using this technique were violated, 25 
rendering the estimated values as inefficient (variance in the model can be further improved). 26 

The application of artificial neural networks proved to be a most appropriate methodology to 27 
improve the predictability of E* values. The ANN-Lanamme model complied with the model adequacy 28 
criteria, had the best goodness of fit parameters and exhibited the lowest overall bias (69% improvement 29 
in the R2 value and 77% reduction in the Se/Sy value with respect to the Witczak model). 30 

In order to further improve this prediction model for Costa Rica, future calibration and 31 
verification efforts are necessary; therefore, it is recommended to increase the number of tests performed 32 
(increase the E* database). 33 
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