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ABSTRACT

Various dynamic modulus (E*) predictive models haeen developed to estimate E* as an alternative to
laboratory testing. The most widely used modehés1999 [-37A Witczak predictive equation based on
North American mixtures laboratory results. Thdaténces in material properties, traffic informatio

and environmental conditions for Latin American nries make it necessary to calibrate these models
using local conditions. Consequently, the Natidrsdloratory of Materials and Structural Models a& th
University of Costa Rica (in Spanish, LanammeUC&) previously performed a local calibration of this
model based on E* values for different types oft@ddican mixtures. However, further research has
shown that there is still room for improvementhe taccuracy of the calibrated model (Witczak-
Lanamme model) based on advanced regression tegwéych as artificial neural networks (ANN).

The objective of this study was to develop an imptband more effective dynamic modulus E*
predictive regression model for mixtures in Cosizaly means of ANN based models. A comparison of
the predicted E* values among the Witczak modetc¥dk-Lanamme model and the new and improved
model based on artificial neural networks (ANN-Lamae model) indicated that the former not only met
the model adequacy checking criteria but also etddlihe best goodness of fit parameters and thedb
overall bias. The findings of this study also supgd the use of more advanced regression techniques
that can become a more attractive alternativedal lcalibration of the Witczak I-37A equation.
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INTRODUCTION

The most important asphalt concrete mixture prgpefluencing the structural response of a flexible
pavement is the dynamic modulus (E*). For a spedcifixture, temperature, rate of loading and aging
significantly influence this property. E* is alsbet primary hot-mix asphalt (HMA) material property

input at all three hierarchical levels in the newamanistic empirical pavement design guide (MEPDG)
(ARA, 2004

Various E* predictive models have been developegstonate E* as an alternative to laboratory
testing. The most widely used model is the 1999A-3Vitczak predictive model based on conventional
multivariate regression analysis of laboratory t@sta. Because of this, the Witczak model has been
evaluated using many different datasets and has ¢edibrated to several regions. However, use ef th
model with no calibration for local mixtures shobld limited.

A study by the University of Minnesota (on mixtufesm four cells at Mn/ROAD) found that the
Witczak predictive equation fitted the data relaelvwell in some locations at intermediate and low
temperatures, but for other locations the diffeesnawere significantGlyne et al., 2008 This study
concluded that the Witczak equation should be wgtdcaution and that further research was needed t
validate the Witczak equation for mixtures typigalsed in Minnesota.

A study at the University of FloridaB{rgisson et al.2005, evaluated the Witczak predictive
equation for 28 mixtures typical to Florida. Ovérétl was found that the Witczak predictive equatio
resulted in a slight bias for the mixtures investégl. However, the results also allow for a coroecbf
the bias between predicted and measured E* by nwastatistical calibration. It was also found tHzt
predictions at higher temperatures generally wémssec to measured values than predictions at lower
temperatures, suggesting that the database usddvedop the Witczak model could be restricted to
predicting the modulus of mixtures tested at higleenperatures, or that, for the mixtures studibd, t
sigmoidal function used may produce slightly biag&dvalues at lower temperatures. Finally, it was
concluded that when testing results are not availaeliable first order estimates of E* for mixggr
typical to Florida can be obtained with the Witczakdictive equation, by applying a correction dact
obtained from the testing of local mixtures.

In a study by North Carolina State UniversiKira et al., 2005 41 mixtures commonly used in
North Carolina were used to evaluate the predictiocuracy of the Witczak model and the influence of
some mixture variables in the prediction of E*. T$tady showed that Witczak’s predictions for cooler
temperatures were better than at warmer tempesatiitds is the opposite of what was observed in
Florida and thus highlights the importance of pragaibration.

A study by Schwartz2005 at the University of Maryland evaluated the aecyrand robustness
of the Witczak predictive equation through a sesefisitivity and validation analyses, using the esam
database with which the Witczak model was calilokgpbus an independent set of laboratory E* tett da
for 26 other mixtures. The validation of the Witkzaodel against the independent set of data shawed
agreement between predicted and measured E* vilaesvas nearly as good as for the calibration data
set, but with a slight positive bias (predicteduesl were generally higher than the measured détighw
was higher for lower stiffness/higher temperatweditions.

The University of Arkansas study on 12 differenxtuies showed a good correlation between
the Witczak predicted E* values and those measimethe laboratory Tran and Hall, 200h The
goodness-of-fit statistics showed that the prealictf E* for the mixtures used in the study ranfredn
very good to excellent, according to the subjectivieeria used. However, the A and VTS parameters
used in the Witczak predictive equation were thiaule values proposed in the MEPDG and not directly
calculated.

The Louisiana Transportation Research Center cdedua study on two 25-mm Superpave
mixtures with two different binder types to compaweo simple performance tests, performed in two
laboratories Mlohammad, 2005 The prediction capability of the Witczak modehsvalso evaluated. It
was also found that the E* can provide consistestlts for plant-produced mixtures. Another finding
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was that the E* was sensitive to different bindamtents in the mixture. They concluded that thec?ék
model can predict E* values with a reasonable bdiig.

Another study developed by Dongré et &0@5 showed that the Witczak model was able to
produce reasonable predictions of dynamic modulbenacompared to data from mixtures tested in
laboratory. However, they also found that both ni®deeeded to be corrected or refined to more
accurately predict E* values from production sarspl€urrently, the model under-predicts E* values
when higher binder contents or air voids than thodeated by the mix design are used in production
samples.

Robbins and Timm2011), evaluated three E* predictive models (WitczaB7i&, Witczak 1-
40D, and Hirsch) with the use of 18 HMA plant-prodd, lab-compacted mixtures (representative of
general-use mixtures used in the southeastern dJSii#tes) that were placed at the 2006 Nationale€en
for Asphalt Testing Test Track. The Hirsch model éstimating HMA modulus is based on a law of
mixtures for composite material€lfristensen et al., 20Dp3wvhich utilizes the shear modulus of the
binder, G*, and volumetric properties of the mix pieedict E*. E* predictions were made at three
temperatures and three frequencies for direct casgrawith measured values. The Witczak models had
the greatest deviation from measured values, aedWiitczak 1-40D model overestimated E* by
approximately 61%. The Hirsch model most accurapeidicted the moduli for the 2006 Test Track
mixtures.

Singh et al. 2011) also evaluated the Witczak 1-37A model for these in estimating the
dynamic modulus of selected HMA mixtures that avenmonly used in Oklahoma. The performance of
the predictive model was evaluated by three appemcgoodness-of-fit statistics, comparison of the
measured and predicted values, and local biaststat{slope, intercept, and average error). Areglyef
the results showed that the predictive power ofntioelel varied with the temperature and air voicklsv
of a compacted specimen. A calibration factor wagetbped for the model to obtain an accurate etima
of dynamic modulus. This calibration was considehetpful for Level 2 and Level 3 designs of the
Mechanistic—Empirical Pavement Design Guide (MEPDG)

El-Badawy et al. 2012, evaluated the influence of the binder charaza¢gion input level on the
performance of the MEPDG E* predictive models. 2WIAd mixtures commonly used in Idaho were
investigated. Results showed that the performarfc¢h® investigated models varies based on the
temperature and the binder characterization metfibd. NCHRP 1-37A E* model along with MEPDG
level 3 binder inputs yielded the most accurate laadt biased E* estimates. The accuracy of thidaino
was further enhanced by introducing a local calibrefactor.

In the case of Costa Rica, a similar analysis werfopmed to ensure that the Witczak model
could be readily applied to local mixturesofia et al., 201). The Witczak model was identified to
produce slightly biased predictions of E* when cangul to several gradations, mostly of typical use i
the Country. As was the case with some of the ptesvstudies, the model showed positive bias atehigh
stiffness/lower temperature conditions. Conseqyerdl calibrated Witczak model was fitted using
nonlinear regression.

Far et al. 2009, presented the outcomes from a research effatételop models for estimating
the dynamic modulus of hot-mix asphalt (HMA) layerslong-term pavement performance test sections.
The goal of their study was to develop a new, raioand effective set of dynamic modulus E*
predictive models. These predictive models usdticéat neural networks (ANNSs) trained with the sam
set of parameters used in the modified Witczak Blimdch models. Modulus values from multiple
mixtures and binders were assembled from existimtipnal efforts and from data obtained at North
Carolina State University. The results show that pinedicted and measured E* values were in close
agreement when ANN models were used.

A paper presented by Ceylan et &0@9 discussed the accuracy and robustness of theugari
predictive models (Witczak 1-37A and 1-40D and ANdsed models) for estimating E* values. The
ANN-based E* models using the same input variakeesibit significantly better overall prediction
accuracy, better local accuracy at high and lowpemature extremes, less prediction bias, and better
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balance between temperature and mixture influenbes do their ordinary least squares (OLS)
regression-based counterparts. As a consequeredNN models as a group are better able to rank
mixtures in the same order as measured E* for fedronmental and design traffic conditions.

Singh et al.,Z012 developed an artificial neural network to predighamic modulus of twenty
different HMA mixes comprised of various sourcdges, types of aggregates, and different volumetric
properties. The ANN-based model was developed derisg the following input variables: aggregate
shape parameters (i.e., angularity, texture, fang sphericity), frequency, asphalt viscosity, aird
voids of compacted samples. The shape parameteliffarent sizes of coarse and fine aggregates were
measured using an automated aggregate image measuirgystem (AIMS). The results showed that the
inclusion of aggregate shape parameters can beassedependent parameters in a model for estimatin
the dynamic modulus of hot mix asphalt.

In summary, the I-37A Witczak predictive model kawrked well in some cases and not so well
in others. Calibration of this equation has alserb@anplemented by several researchers while others
decided to utilize the 2006 Witczak model or dedidie adopt a different approach such as the Hirsh
model. Finally, the use of more advanced regressiohniques has also proven to be a more attractive
alternative to calibration of the Witczak I-37A edjon.

OBJECTIVE

The objective of this study was to develop an impob and more effective dynamic modulls
predictive regression model for mixtures in CostaaRby means of artificial neural network (ANN)
based models.

MIXTURE CHARACTERIZATION AND EVALUATION

From 2007, LanammeUCR has conducted a laboratarjuation of the applicability of the Witczak
Model to a typical aggregate source and one typsphalt binder produced in Costa Rftaria et al.,
2011) The flow chart presented in Figure 1 summaribhessikperimental plan of the study.

Aggregate Characterization
The study involved one aggregate source (from ¢heast region of the country called Guapiles). The
aggregate is extruded from igneous deposits aloigea The aggregate properties are shown in Table

Asphalt Binder Properties

In Costa Rica only one type of asphalt is produdde: binder viscosity classification correspondsitio
unmodified AC-30. Based on the SUPERPAVE specificatthe binder classifies as a PG64-22. The
properties for the asphalt binder are shown in & abl

Specimen Preparation
Ten different types of asphalt mixtures were desigim the laboratory. Three dense graded mixtueds (
G2 and G3) below theptevention zore(also called SUPERPAVE's restricted zone); twoiske graded
mixtures (G6 and G7) above thprévention zorie two dense graded mixtures (G4 and G5) thru the
“prevention zorig one Stone Matrix Asphalt (SMA) mixture (G9); ongicro surfacing mixture (G8),
and a typical plant dense graded mixture (G10). Jiaelations are presented in Table 3 and Figure 2.
The design air void content was fixed to 4%. Twistore design methodologies were used: Marshall
and Superpave. The optimum asphalt content by eighw of aggregate (DWA) and by total weight of
mixture (TWM), voids in the mineral aggregate (VMAhe voids filled with asphalt (VFA), and the
effective asphalt content (Pbe) based on both mlethgies are shown in Table 4.
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PZ*: “prevention zone” or SUPERPAVE’s restricted zone
FIGURE 1 Flow Chart for the Experimental Plan
TABLE 1 Physical Properties of the Aggregates Used in the Study.
Property Test Method | value | Unit |  Specifications
Coarse Aggregate
L.A. Abrasion AASHTO T 96 21.21 % 37% max.
Specific Gravity AASHTO T 85 2.652 2.85 max.
Absorption AASHTO T 85 1.69 % 4% max.
Faces Fractured 100 % 90% mirf.
1 face ASTM D 5821
2 or more 99.8 % 75% mid.
Fine Aggregate
Plasticity index AASHTO T 90 NP 10% max.
Sand equivalent AASHTO T 176 78 -
Angularity AASHTO TP 304 37.2 % -
Specific Gravity AASHTO T 84 2.549 2.85% max.
Absorption AASHTO T 84 3.283 % -

T Nevada DOT Standard Specifications for Road andigerConstruction, 2001.
2 standard Specifications for Constructions of Raaut$ Bridges on Federal Highways Projects, FP-03
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TABLE 2 Physical Properties of the Used Asphalt Binder.

Aging State Property Unit Asphalt Binder AC-30
Density at 25°C g/cin 1.030
Absolute viscosity at 60°C Poise 3330
Kinematic viscosity at 125°C centiPoise 961
Original Kinematic viscosity at 135°C centiPoise 565
Kinematic viscosity at 145°C centiPoise 347
VTS, regression slope of viscosity
temperature susceptibility i 343
Regression intercept - 10.26
Absolute viscosity at 60°C Poise 11512
RTEO Kinematic viscosity at 125°C centiPoise 1712
Kinematic viscosity at 135°C centiPoise 938
Kinematic viscosity at 145°C centiPoise 550
TABLE 3 Studied Aggregate Gradations.
Studied Gradation
ASTM | Sieve Below the prevention Thru the Abovethe Micro
(mm) zone prevention zone | prevention zone *) SMA | Plant
Seve Gl G2 G3 G4 G5 G6 G7 G8 G9 G10
3/4 19.0 100 100 100 100 10Q 10 100 10 100 100
1/2 12.5 95 100 90 95 95 98 90 10 9( 95
3/8 9.5 88 95 78 90 90 92 65 81 45 79
N°4 4.75 37 62 40 45 70 67 45 32 28 43
N°8 2.36 28 33 32 37 50 47 42 27 23 32
N°16 1.18 20 23 20 29 27 32 37 22 22 2%
N°30 0.60 13 16 14 22 15 23 30 18 19 16
N°50 0.30 9 12 9 14 8 17 20 14 16 14
N°100 0.15 7 9 7 9 6 12 12 10 13 8
N°200 | 0.075 5 7 6 6 5 8 5 8 10 5

(*) Microsurfacing.
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TABLE 4 Summary Volumetric Propertiesof the Mix for All the Aggregate Gradations Studied.
Description | Gradation| Mix design Va |Pb (DWA) (T\IIDVbM) Pbe VMA VFA
Gl Superpave 4.0% 7.20 6.80 5.69 17.32 77.66
Marshall 4.0% 6.41 6.02 5.18 15.74 74.6p
Below the G2 Superpave 4.0% 7.40 6.90 6.06 17.44 76.12
prevention zone Marshall 4.0% 6.84 6.40 5.49 16.51 75.7B
G3 Superpave 4.0% 6.40 6.00 5.25 15.68 73.40
Marshall 4.0% 6.01 5.67 4.83 15.14 71.98
G4 Superpave 4.0% 5.50 5.30 4.31 12.14 73.20
Thru the Marshall 4.0% 5.44 5.16 4.17 13.9( 69.5B
prevention zone G5 Superpave 8.0% 7.50 7.00 6.0Q 20.90 61.60
Marshall 8.8% 6.50 6.10 5.12 20.04 55.5D
G6 Superpave 4.0% 5.50 5.20 4.35 14.10 72.10
Abovethe Marshall 4.0% 5.84 5.52 4.41 14.57 70.5p
prevention zone G7 Superpave 4.0% 5.00 4.80 3.32 12.32 63.20
Marshall 4.0% 5.50 5.21 4.13 13.74 70.5p
Micro surfacing G8 Superpave 4.0% 5.60 5.30 4.29 14.06 78.68
Marshall 4.0% 5.99 5.65 451 14.87 71.0p
SMA G9 Superpave 4.0% 4.90 4.70 3.74 12.44 68.86
Marshall 4.0% 5.19 4.93 4.01 13.34 71.0p
Plant G10 Superpave 4.0% 6.00 5.70 4.74 15.00 73.00
Marshall 4.0% 5.65 5.35 4.46 14.5( 71.1p

Dynamic Modulus of Asphalt Mixtures

In order to evaluate the dynamic modulus of théediht mixes, all specimens were prepared following
the standard method ASTM D349€ractice for Preparation of Bituminous Specimens Bynamic
Modulus Testing” (ASTM, 20057 he testing was performed according to ASTM D348tandard Test
Method for Dynamic Modulus of Asphalt Mixtures” (A& 2007)and AASHTO T 62'Determining
Dynamic Modulus of Hot Mix Asphalt" (ASTM, 2007)

The experimental design included four factorg finst factor was the gradation with the ten
levels (G1, G2, G3, G4, G5, G6, G7, G8, G9 and GtH#) second factor was the temperature with five
levels (-5, 5, 20, 40 and 55°C), the third factaswthe loading frequency with six levels (0.1, 0.5, 10
and 25 Hz), and the fourth factor was the compacttfort with three levels (30 gyrations of the
Superpave gyratory compactor (SGC), 80 gyrationS@fC, and specimens compacted with 7% air
voids).

Master curves

The master curves and the corresponding shift feetere developed directly from the dynamic modulus
tests. Microsoft Excel Solver was used to optintize calibration coefficients. It involved nonlinear
optimization using the sigmoidal function showrEquations 1 and 2. Both equations describe the tim
dependency of the modulus (The results are presémfBable 5 and Figure 2):

a
LOg|E*| - 5+ 1+ e[j’+y(logt,)

[1]

where,
E* = dynamic modulus.
t. = time of loading at the reference tempegmtur
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o, a = estimated parameters; for a given set of datapresents the minimum value of E* adwda
represents the maximum value of E*.
S, y=parameters describing the shape of the sigmbidation.

am)=— . logt,) =logt)~loga(T) 2
where,
t, = time of loading at the reference temperature.
t = time of loading at a given temperature of insére
a(T) = Shift factor as a function of temperature.
T = temperature of interest.

TABLE 5 Summary of the Fitting Parametersfor the Construction of the E* Master Curves

12

13
14

15

E* (Dynamic modulus]

100000

100

Gradation Parameter
] a B |4
G1 1.8155 2.3618 -0.5631 0.4764
G2 1.8647 2.4533 -0.3800 0.5018
G3 1.8542 2.3952 -0.3458 0.4784
G4 1.8013 2.5136 -0.7055 0.4589
G5 2.1775 1.8860 -0.1475 0.5982
G6 1.7743 2.7039 -0.5207 0.4182
G7 2.1687 2.3301 -0.5388 0.4960
G8 2.0420 2.0748 -0.6264 0.5309
G9 2.0682 2.3802 -0.6617 0.5529
G10 1.5471 2.7260 -0.7342 0.4274

~
N —— é
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FIGURE 2 Master Curves of Dynamic Modulusfor the Gradations Used in the Study
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Quiality of fitted Witczak model on mixesin Costa Rica

For Level 2 and Level 3 analysis, the master cuwesld be developed directly from the dynamic
modulus Witczak I-37A predictive equation showreguation 3. This equation is intended to prediet th
dynamic modulus of asphalt mixtures over a widegeanf temperatures, rates of loading, and aging
conditions based on information that is readilyilade from material specifications or volumetriesign

of the mixture (ARA, 2004).

logE* = 3,750063 + 0,02932p,00 — 0,001767(p400)% — 0,002841p, — 0,058097V,

Vp 3,871977-0,0021p4+0,003958 —0,000017( )2+0,005470
_0,802208 eff + _p4 = P38 — P38 P34 [3]
Vbeff+Va 14¢(—0,603313-0,31335 log(f)—0,39353210g(1n))

where:

E* = dynamic modulus, psi,

n = bitumen viscosity, 106 Poise,

f = loading frequency, Hz,

Va= air void content, %,

Vbeff= effective bitumen content, % by volume,
p34= cumulative % retained on the % in sieve,
p38= cumulative % retained on the 3/8 in sieve,
p4 = cumulative % retained on the No. 4 sieve,
p200= % passing the No. 200 sieve.

The overestimation of E* values for mixtures in @oRica (Figure 4) was reported by Loria and
his associates (Loria et al., 2011). The applicatibthis model on mixtures in Costa Rica not cover
predicted E* values but also failed to comply ofiehe assumptions of OLS regression and ANOVA: a
constant variance of the error term. In the redidaasus the fitted values plot, the errors shdwge
constant variance when the residuals are scatremedbmly around zero. In this case, the residuals
increase or decrease with the fitted values intteathat looks like a funnel or uneven spreadihg
residuals across fitted values, the errors mayhage constant variance (Figure 3). A curvilineatgra
in the residual versus fitted values plot alsodatid that a higher-order term to has to be addstbin

40000 0.5 -
9 04
© * @ 2, ?
30000 0.3
g 308 2
- & g 02 -
w -t
o 20000 - 3 014
(]
- 1
] w 0
° ©
S 10000 - ] 5 01 -
e @ E* Witczak 2
. 9 .02 -
—— Equality o«
0 | : -0.3 -
0 10000 20000 30000 40000 2 3 4 5
E* Lab, MPa Fitted Log(E*) - Witczak Model

FIGURE 3 Evaluation of the Witczak M odd
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As mentioned previously, the Witczak-Lanamme maug$ developed to adjust or calibrate the
Witczak model based on the E* results of severattunés used in Costa Rica. This new model was
suggested based on a nonlinear approach thatisagtlf improved the model fit #&0.9355, standard
deviation of error term=1,494.4 and SSE=5.1997 Model is shown in Equation 4.

log E* =5,535833+ 0,002087,,,— 0,000566(,%9 0,002%98  0,078763
- 2
1 865 4f Vier J+2,399557+ 0,000820,- 0,013420+ 0,000261(+) 0,00%470

1+ 0:05294% 0,498163l0( ) 0,691856la( ))
[4]

The application of the Witczak-Lanamme model ndy dixed the overestimation of E* values
but also in the residual versus the fitted valules, phe errors had constant variance with thediesds
scattered randomly around zero (Figure 4). Howeluether investigation showed that high errors were
still obtained from some mixtures and the variaoicthe predictions was not uniform. Ideally, in thiet
of actual E* values versus predicted ones, a saral random deviation from the line of equality is
desired for all data points. As an attempt to rea@hideal scenario, the artificial neural netwso(RNN)
methodology was implemented using the same dataset.

beff +

40000 ; ; ; 0.3 -
® E* Witczak-Lanamme
— Equality < 021
(5] ]
S 30000 S |
s s 0.1
& 3 0
© 20000 \
8 u® @201 -
2 ©
T >
] T -02 -
& 10000 - z
© 0.3 -
| |
0 J -0.4 -
0 10000 20000 30000 40000 2 3 4 5
E* Lab, MPa Fitted Log(E*) - Witczak-Lanamme Model

FIGURE 4 Evaluation of the Witczak-Lanamme Model

Development of the ANN-Lanamme M odéel
An artificial neural network is a massively parhtigstributed processor that has a natural prope i
storing experimental knowledge and making it avdddor use Priddy and Keller, 2006 Consequently,
knowledge is acquired by the network through aniear (training) process; the strength of the
interconnections between neurons is implementedhégins of the synaptic weights used to store the
knowledge. The learning process is a procedurelabténg the weights with a learning algorithm ider
to capture the knowledge. In other words, the afnthe learning process is to map a given relation
between inputs and outputs of the network.

The learning method used to develop the ANN models a feed-forward back propagation with
the sigmoidal function, Equation 5, as the tranfifection. It was found that the two-layer netwavith
10 nodes in the hidden layer was the most appttepfia this dataset (Figure 5). The basic formhef t
ANN is given by Equations 5 through 7. For theseatigns, a single index indicates an array; dual
indices represent a matrix with the first lettedigating the values in the row and the secondrlette
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indicating the values in the column. The ind represents the input panaters an the indexk represents
the hidden layer.

f(T) = —=—1 [5]
Hi = Bje + X1, Wy P; [6]
Output = Ln(E*) = f(Bo + X7ty HxW,, ) [71
where;

T = placeholder variable,

H} = transferred value of nodes at the hidlayer,

P; = input variables @200,p4, p38, Va , M, loglogfh), temperature and frequen,
Wy, = weight factors for the hidden lay

W, = weight factors for the output lay

B,l = bias factors for first layer,

BO = bias factor for outer layer,

m = number of nodes ihidden laye!

Ln(E*) = natural logarithm ofE*.

Activation process to transport

/ input vector inte the network <
W, B! & &
4
X1 ) (1 2 & L
& &
) N\
= | X2 2
3 Ln(E*)
g
S | X3 3
e ° \ J
— ] o
Xp D
! Error
1 Hidden
Layer #1

Backpropagation of error te
updata weights and biases

FIGURE 5 Schematic of training process.
Model weights and bias values

The followingshows the weight matrices and bias vectors foAtRE -Lanamme modelf these
parameters are substituted into Equat5 through 7 wittp200 = 5,04 = 63,p38 = 12, Va = 7.41, peft =
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5.69, loglog() = 3.7859, temperature = -3.4 and frequency =ti&5 predicted Iri£*) value of 9.31415
and the E* value of 11,402 MPa would be calculdtech this recommended model.

Bi =[2.3134 4.0247 2.1380 —11.9793 0.3330 —6.3721 —5.0298 —0.2873 — 10.6756 10.3805]

4.2794 23.2425
-10.8394 -2.4254
7.5808 5.2567
-15.3861 26.5062
Wi = 2.3739 -5.2556
0.3161 -6.6774
-0.1810 -14.1131

0.0159 0.6328

0.2402
0.0377
0.0410
0.0722
6.6041
Wi =1 .0.0695
-0.2727
7.6429
-13.6531
0.0456

The results of the application of the ANN-Lanammedel on the entire E* database are shown

-4.0547 -12.9996 0.00804144 -3.4470 -0.0002 0.0118 13.7398
-5.4623 4.0784 -0.02721539 -7.4460 0.0250 0.0073 -17.2411
7.6583 -22.1995 0.12507495 0.8265 -0.1192 -0.0303 -5.5932
-1.7360 3.2115 0.150%0341 -18.8182 -0.1521 -0.0390 -3.5607
8.2966 -4.0598 0.18797634 3.6738 -0.1812 -0.0185 5.0671
-4.7862 0.2819 0.48716285 -0.4955 -0.4942 -1.8913 4.2234
-8.9340 2.1166 1.34@73166 -0.5999 -1.3313 -1.8068 2.0520

0.4785 -0.1558 -0.37461602 0.0106 0.3321 -8.0241 0.1222

Bo=-13.6918

in Figure 6. In the plot of actual E* values vergsusdicted ones, a small-constant deviation froenlitie
of equality was acquired for all data points. Idigidn, in the residual versus the fitted valuestpthe
errors had constant variance with the residuatéesea randomly around zero.
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FIGURE 6 Evaluation of the ANN-L anamme M oddl.

The slope of the measured versus predicted curvallfthree models was used to perform a bias
analysis. As shown in Figure 7 the highest deuwafiom the line of equality in terms of the slopasw
obtained for the Witczak I-37A model. On averagedicted E* values were deviated from the equality
line by 35%. In second place, the Witczak-Lanamnoeleh predicted E* values with a slight deviation
from the equality line (about 4%). Finally, the ANMd the lowest deviation from the line of equality

with only 1%.

40000
y =1.3484x
* ** *
S N N *® *
30000 S e
© . ¢ . y=0.9937x
o . ‘Q . *
E @ g . * ‘.‘
% ‘:, &"“0 A S olan y=0.962x
S 20000 5 X o
] ‘4 » =
7] " ‘& a " "
% z: (RS =
Q [ ]
= ]
& [ _‘ * E* Witczak
[ | ¥
10000 - - = E* Witczak-Lanamme
T . A E* ANN-Lanamme
—Equality
0 i f
0 10000 20000 30000 40000
E* Lab, MPa

FIGURE 7 Comparison of Predictive Models.
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The accuracy of the three predictive models was alsalyzed by means of goodness of fit
parameters in arithmetic space. Table 6 showsalelated parameters for all the models along tith
the respective criteria. The lowest coefficientdetermination (B in arithmetic space and the highest
standard error of the estimate/standard deviatimoev (Se/Sy) for the Witczak model confirmed its
limited ability to predict E* values for mixtures iCosta Rica. A significant improvement in the
prediction of E* values, with respect to the Witkzaodel was obtained with the use of the Witczak-
Lanamme model (59% improvement in the R2 value 28% reduction in the Se/Sy value). However,
the best results were obtained for the ANN-Lanammoeel with the highest®and lowest Se/Sy values
(69% improvement in the Rvalue and 77% reduction in the Se/Sy value witipeet to the Witczak
model).

TABLE 6 Goodness of Fit Parameters

Parameters Goodness of Fit (Witczak et al. 2002)
Model R? Riadj. | _ 0. | Criteria R? SalSy
Witczak 0.592 0.589 0.372 Excellent >0.90 <0.35
Witczak-Lanamme 0.935 0.934 0.262 Good 0.70 -.089 0.36 - 0.55
ANN-Lanamme 0.993 0.992 0.086 Fair 0.40 - 0.69 0.865
Poor 0.20-0.39 0.76 - 0.9(

In summary, overestimation of E* values for CosteaR mixtures by the Witczak 1-37A model
led to its local calibration (Witczak-Lanamme mqdéin additional model adequacy checking performed
on these two models led to the construction of @ aad improved model based on artificial neural
networks (ANN-Lanamme model). This final model moily met the model adequacy criteria but also
had the best overall goodness of fit parameters.

CONCLUSIONSAND RECOMMENDATIONS

Even when a local calibration of the Witczak I-3idel was performed for 10 mixtures in Costa Rica,
there was still room for improvement. Further irtigetion showed that high errors were still obtdine
from some mixtures when using the calibrated modelditionally, the data clearly indicated that
calibration of the E* models, based on direct aggtion of standard regression techniques such & OL
was not adequate since several of the assumpti@ue rwhen using this technique were violated,
rendering the estimated values as inefficient @raré in the model can be further improved).

The application of artificial neural networks proveo be a most appropriate methodology to
improve the predictability of E* values. The ANN+@mme model complied with the model adequacy
criteria, had the best goodness of fit parametedsexhibited the lowest overall bias (69% improvatne
in the R value and 77% reduction in the Se/Sy value wisipeet to the Witczak model).

In order to further improve this prediction modelr fCosta Rica, future calibration and
verification efforts are necessary; therefores itdcommended to increase the number of testsrpexto
(increase the E* database).
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