Evalúación del Comportamiento de la Fatiga de una Mezcla de Concreto MR-45 MPa con Adición de Polipropileno.
Evaluation of Fatigue Behavior of Concrete Mix MR-45 MPa with Addition to Polipropileno.

Ana Luisa Elizondo Salas¹, Sukti Monge Morales², Luis Guillermo Loria¹, Alejandro Navas Carro¹

¹ Unidad de Desarrollo y Actualización de Especificaciones Técnicas PITRA-LanammeUCR, Universidad de Costa Rica.
² Ingeniería Civil, Industria Constructora del Pord.
³ Cordinador General, Programa de Infraestructura y Transporte. PITRA-LanammeUCR, Universidad de Costa Rica
Director, LanammeUCR, Universidad de Costa Rica
ana.elizondosalas@ucr.ac.cr, phone 2511-2541, fax 2511-4440

RESUMEN

Este artículo presenta los resultados obtenidos de un estudio realizado para elaborar un modelo de fatiga para un concreto hidráulico con adición de fibra de polipropileno.

Considerando que el daño más común en los pavimentos es la fatiga causada por cargas repetitivas de vehículos, y que Costa Rica no cuantifica este daño, nace la necesidad de poner en práctica una prueba que permita a los diseñadores considerar la capacidad del material a la acción dinámica de los vehículos, para asegurar la vida útil para la que fue diseñado.

Para esto, se propuso una mezcla de hormigón hidráulico con módulo de ruptura de 4,5 MPa, típicos en Costa Rica, se determinó el porcentaje óptimo de la fibra de polipropileno, y se sometió a ensayo de fatiga, con el fin de obtener un modelo de la optimización del diseño y el análisis de rígido pavimentos. De los resultados obtenidos, donde se compara, bajo condiciones especificadas, hormigón convencional con hormigón con polipropileno, se concluye que este último tiene un mejor comportamiento a la fatiga, al menos para aplicaciones cercanas al esfuerzo a la rotura del material, y exhibe una mayor tenacidad pues su módulo de elasticidad disminuye. Por otra parte, la incorporación de polipropileno no reduce el espesor del elemento estructural, por lo que se debe considerar los costes asociados con su incorporación.

A pesar de que se estableció un modelo de de fatiga para las condiciones específicas dadas, es necesario que se depure y calibre haciendo más pruebas, con el fin de simular de manera más realista el comportamiento de los pavimentos rígidos en Costa Rica.

INFORMACIÓN DEL ARTÍCULO

Historial del artículo:
Recibido 29-07-2013
Aceptado 15-11-2013
Publicado 20-12-2013

Palabras Claves: Fatiga
Módulo de Rotura
Polipropileno
ABSTRACT

This article presents the results of a study to develop a fatigue model for hydraulic concrete with polypropylene fiber addition. (Reference Monge M, Sukti (2013)).

Whereas the most common damage in pavements is fatigue caused by repetitive loading of vehicles, and that Costa Rica does not quantify this damage, comes the need to implement a test that allows the designers to consider the ability of the material vehicle dynamics to ensure the life for which it was designed.

For this, we proposed a hydraulic concrete mixture with modulus of rupture of 4.5 MPa typical in Costa Rica, it determines the optimal percentage of polypropylene fiber, which was subjected to fatigue testing in order to obtain a model optimizing the design and analysis of rigid pavements. From the results obtained, which compares, under specified conditions, conventional concrete with reinforced polypropylene, it is concluded that the latter has a better fatigue behavior, at least for applications near the stress at break of the material, and exhibits greater tenacity as its modulus of elasticity decreases. Moreover, the incorporation of polypropylene does not reduce the thickness of the structural element, so that one should consider the costs associated with their incorporation.

Although established fatigue model for the specific conditions given, it is necessary to debug and calibrate more testing, in order to more realistically simulate the behavior of rigid pavements in Costa Rica.

1. Introducción

1.1. El Problema Específico.

La capa de rueda de concreto hidráulico o asfáltico, es el elemento del pavimento que debe resistir los efectos del tránsito, factores climáticos, deformaciones y agrietamientos, sin perder su capacidad estructural. En los pavimentos, un tipo de deterioro usual es el agrietamiento por fatiga, el cual se produce cuando éstos se someten a cargas repetitivas de tránsito. Sin embargo, en nuestro país no se realizan pruebas para cuantificar el daño por fatiga, por lo que surge la necesidad de implementar un ensayo que permita al diseñador de pavimentos tomar en cuenta la capacidad del material frente a la acción dinámica de los vehículos.

A nivel mundial se emplean distintos modelos de fatiga para el diseño de pavimentos rígidos como los son el modelo incluido en la MEPDG (Mechanistic empirical Pavement Design Guide) de la AASHTO (American Association of State Highway and Transportation Officials), el modelo PCA (Portland Cement Association), el modelo de cero mantenimiento (Federal Highway Administration) y el modelo calibrado mecánico (US Army Corps of Engineers); estos modelos fueron calibrados bajo condiciones distintas a las que se presentan en el país, por lo que resulta evidente la necesidad de crear un modelo que refleje las características reales de los materiales utilizados en Costa Rica.

Por otro lado, para optimizar el diseño de pavimentos normalmente se busca reducir el espesor de las capas que lo conforman, sin comprometer la capacidad estructural del elemento, pues esto implica una disminución en los costos. En este sentido, en la última década se ha incrementado el uso de fibras no estructurales para modificar el concreto y lograr reducir el espesor de las capas de pavimento, sin embargo el tema no ha sido investigado ampliamente y se requiere estudiar el comportamiento mecánico de ambos materiales para su uso.

Elizondo et al
Debido al vacío existente en cuanto a la inclusión de la fatiga en la vida útil del pavimento, en este proyecto de investigación, se pretende desarrollar una herramienta para evaluar el desempeño de los pavimentos rígidos a largo plazo y de esta manera mejorar la calidad de la infraestructura vial del país.

1.2. Importancia.

Nuestro país se encuentra en vías de desarrollo, por lo que es importante que la infraestructura vial se encuentre en óptimas condiciones de operación para lograr movilizar la mayor cantidad de productos, mercancías y personas, por medio de la red vial de una manera eficiente. Es así como, este proyecto contribuirá al mejoramiento del diseño de pavimentos rígidos en el país, lo cual representa una ventaja a largo plazo pues al incorporar conocimientos en materia de fatiga se puede asegurar la vida útil de los pavimentos a nivel nacional y sentar un precedente para iniciar la investigación en otros materiales utilizados en pavimentos como lo son las bases estabilizadas, comúnmente utilizadas para la construcción de carreteras con pavimento asfáltico.

Algunos autores han señalado que el uso de fibras sintéticas en el concreto asfáltico resulta beneficioso para incrementar la resistencia a la fatiga, ya que las fibras incrementan la capacidad a flexión de la mezcla y contribuyen a una mayor duración del concreto. (Pujadas, 2009; Mendoza, Aire y Dávila, 2011). El propósito de este proyecto consiste precisamente, en incorporar los beneficios brindados por la tecnología de los polímeros en los pavimentos rígidos con el fin de mejorar su desempeño, así como reducir los costos de construcción y mantenimiento de las carreteras.

Los resultados generados a partir de la calibración del modelo de fatiga serán tomados por el LanammeUCR para impulsar la creación de una ley de fatiga del concreto en Costa Rica que sirve de insumo para regular la construcción de los pavimentos rígidos construidos en el país.

1.3. Antecedentes.

En las últimas décadas se ha popularizado el uso de fibras sintéticas en el concreto como lo son el polipropileno, el poliestireno y la fibra de vidrio. Varios estudios al respecto son:

- State of the art report on fibre reinforced concrete del American Concrete Institute (ACI), Estados Unidos: fibras utilizadas en el concreto, incluyendo el polipropileno, y sugieren su uso para el control de grietas y reforzado.

- Durability of polypropylene fibre reinforced concreto. España (Pujadas, 2009): al reducir la fragilidad y ganar tenacidad por inclusión de fibra, ésta se considera adecuada para el control de fisuración.

- Comportamiento a la fatiga de una mezcla de concreto MR-3.5 MPa para pavimento con placas plásticas. Colombia, (Boada y Pérez, 2010): concreto con tres tipos de fibras plásticas: polipropileno, caucho y tiras de bolsas de leche, para lo cual observaron reducción en la capacidad a compresión del concreto con fibra, mientras que la resistencia a flexión aumentó.

- Concreto Reforzado con Fibras de Polipropileno, Costa Rica, Koss (2001): demuestra que la ganancia en f'c debido a las fibras no es significativa, el módulo de ruptura es mayor y se presenta más resistencia al impacto. (Koss, 2001).

- Diseño Experimental de un Concreto Reforzado con Fibras de Vidrio para Uso en Losas de Pavimento, Costa Rica, Sánchez (1985): concreto con fibras de vidrio, para el cual aún cuando se pierde resistencia a la compresión, se incrementa la capacidad a flexión de la losa.

- Los estudios realizados con respecto a la implementación de ensayos referenciados a una norma de fatiga en el concreto son escasos. Se tienen por ejemplo, lo siguientes:
 - Cumulative fatigue damage analysis of concrete pavement using accelerated pavement testing results Estados Unidos, (Rao y Roessler (2005)): compilación de los principales modelos de fatiga que se utilizan actualmente.
 - Austroads (Australian and New Zealand Road Transport and Traffic Authorities): desarrollan procedimientos para ejecutar pruebas de módulo y fatiga en materiales cementados (para bases estabilizadas). Se tomaron en cuenta las recomendaciones
guía para la implementación y montaje del ensayo de módulo dinámico y de fatiga.

1.4. Objetivos del estudio.

Evaluar el comportamiento a fatiga de una mezcla de concreto hidráulico con Módulo Resiliente 4,5 MPa con adición de fibras de polipropileno. Para ello, se propone:
- Determinar sus propiedades de resistencia mecánica.
- Implementar en el LanammeUCR un ensayo de fatiga.
- Elaborar un modelo de fatiga propio para Costa Rica.
- Realizar un diseño mecánico del concreto, a partir del modelo de fatiga.

1.5. Alcances y Limitaciones

Para la definición de la metodología de investigación y el alcance de la investigación, se consideraron los siguientes aspectos:
- Los resultados de este estudio aplican solamente al diseño de mezcla y agregados utilizados y se refieren a un solo tipo de fibras de polipropileno (FibroMac 12) en tres dosisificadas distintas (0,1%, 0,2% y 0,3% del volumen de total de concreto).
- La investigación se enfocó en el trabajo de laboratorio, no se buscaron correlaciones de los resultados con trabajo de campo.
- El análisis de varianza de los resultados se realizó mediante pruebas ANOVA.
- Para la implementación de los ensayos de módulo dinámico y fatiga en el concreto, de acuerdo con el informe Preliminary Investigation of the Influence of Microcracking on Fatigue Life of Cemented Materials, de Austroads (2012).
- El diseño del pavimento considera propiedades de materiales típicos de Costa Rica y tránsito de la encuesta de carga vehicular realizada por el LanammeUCR para la Ruta Nacional N° 1 en el sentido Cañas-San José, para un periodo de diseño de 20 años.
- Se utilizó la metodología AASHTO 93 para el diseño de pavimento rígido y para la revisión por fatiga del concreto se utilizó el software ISLAB 2000.
- No se consideró el análisis económico del tipo costo-beneficio para determinar la factibilidad de uso de las fibras de polipropileno en el concreto para pavimento.

De igual forma, se consideraron las siguientes limitaciones:
- Las pruebas de laboratorio dependieron de la disponibilidad de equipo del LanammeUCR.
- El personal técnico del LanammeUCR no tenía experiencia en ensayos de módulo dinámico o de fatiga en el concreto, por lo que se realizaron pruebas preliminares para calibrar la carga y frecuencia correcta.
- No se tiene certeza del comportamiento del concreto modificado con fibras. La información de estudios previos realizados es contradictoria.
- Todos los especímenes se fabricaron en coladas distintas debido a la capacidad de la batidora y a la utilización de diferentes porcentajes de adición de fibra.
- No se verificaron las deformaciones registradas por las gárgolas extensómetricas con las deformaciones en las vigas durante la falla para los ensayos de módulo dinámico.
- En el modelo con el software de elemento finito no se considera el análisis por temperatura, ni el efecto de las condiciones climáticas en el pavimento, pues no se cuenta con datos fidedignos para realizar el análisis.

2. Metodología de investigación

La investigación se ejecutó en tres fases:

2.1. Fase teórica

Estudio y revisión de la información existente acerca del comportamiento mecánico del concreto modificado con fibras sintéticas y de la implementación de ensayos de fatiga en el concreto con y sin adición de fibras.

2.2. Fase experimental

Se caracterizaron los agregados y el cemento, de todas las probetas de concreto para todos los ensayos, estáticos y dinámicos, siguiendo los lineamientos indicados por las norma ASTM C33/C33M (Standard Specification for Concrete Aggregates) y se realizaron los ensayos de:

Con el fin de realizar los ensayos estáticos se fabricó una mezcla control según el diseño de mezcla y luego se realizaron otras tres mezclas con valores de adición de fibras de polipropileno distintos. Se fallaron tres especímenes a 7 días y otros tres a 28 días, por cada tipo de mezcla para cada uno de los ensayos. Se realizaron los siguientes ensayos para todos los tratamientos: Resistencia a la Compresión de Cilíndricos de Concreto (ASTM C39), Resistencia a Flexión en Vigas (ASTM C78) y Módulo de Elasticidad Estático y Relación de Poisson del Concreto (ASTM C469).

Con los resultados de los ensayos estáticos y dinámicos se calibró un modelo de fatiga para Costa Rica, que contempla las características de los agregados, el cemento y de las fibras de polipropileno utilizados en la mezcla de concreto. Se obtuvo una curva donde se grafica el número de repeticiones de carga permisibles para que ocurra la falla por fatiga contra una razón del esfuerzo aplicado.

2.3. Fase analítica

Una vez obtenido el modelo de fatiga se realizó un diseño mecanicista utilizando el software ISLAB2000, por medio del cual se calculan los esfuerzos y deformaciones de una losa de pavimento con secciones típicas aplicando las cargas de diseño deseadas. Finalmente, se tomaron todos los resultados obtenidos en las diferentes fases del proyecto y se analizaron con base en los objetivos planteados. De esta manera se llegó a las conclusiones y recomendaciones del proyecto.

3. Marco teórico

3.1. Generalidades del pavimento rígido

La principal ventaja que ofrece el concreto hidráulico frente a los pavimentos bituminosos, es que permite una mejor distribución de las cargas verticales hacia el resto de la estructura del pavimento. Dicha estructura está conformada por la losa y la base, que a su vez se apoya sobre la subrasante.

![Figura 1. Sección de pavimento](image)

Fuente: Calo, 2010

Las estructuras de concreto son mucho más rígidas que las de asfalto, además pueden llevar acero en las juntas, el cual contribuye a controlar las deformaciones en toda la estructura, mientras que favorece la transferencia de carga. En caso de que las losas no posean dovelas o juntas transversales, la transferencia de carga se da mediante la fricción del agregado.

3.2. Diseño de pavimentos rígidos

Para en diseño de pavimentos, ya sean rígidos o flexibles, la tendencia en Costa Rica ha sido utilizar la Metodología AASHTO 93, que es una metodología empírica que evalúa el desempeño del pavimento en función de las deformaciones de la subrasante utilizando la teoría de la elasticidad.

La PCA propuso en 1984 un método de diseño mecanicista-empírico, exclusivo para pavimentos de concreto, y tiene como base varias torías de pavimentos como Westergard, Pilkey y Ray y fue desarrollado en parte interpretando los resultados del modelo de elementos finitos basados en el comportamiento de una losa de espesor variable y dimensiones finitas (Vega, 2012).
A diferencia del método AASHTO 93, el método de diseño de la PCA considera dos criterios de falla, la falla por erosión y la falla por fatiga. Se establece que un pavimento puede llegar a fallar por erosión de la subbase cuando se presentan diferencias de elevaciones en las juntas y bombeo excesivo que va formando huecos bajo la losa. El análisis del criterio de fatiga es utilizado para evaluar los esfuerzos producidos en las losas del pavimento ante la aplicación de cargas (Corjeno y Velásquez, 2009).

3.3. Metodología de diseño mecanicista-empírica

En el año 2002, AASHTO publicó una guía de diseño mecanicista-empírica MEPDG (Mechanistic empirical Pavement Design Guide), considera la heterogeneidad de los materiales de la estructura del pavimento, y toma en cuenta las condiciones del sitio, por lo que propone un diseño con criterios de evaluación estructural y de servicio.

Esta metodología todavía no se ha utilizado en Costa Rica pues no se ha calibrado para los materiales que se encuentran en el país. Sin embargo, en esta investigación se realiza un diseño mecanicista al que se le incorpora el modelo de deterioro por fatiga, obtenidos mediante los ensayos de laboratorio realizados.

3.4. Fatiga del concreto

La falla por fatiga ocurre ante la acción repetitiva de cargas dinámicas sobre el concreto, causando esfuerzos que forman micro fisuras en el material y que luego lo llevan a la ruptura. Entre los factores que afectan en los pavimentos hidráulicos se encuentran el número de aplicaciones de carga, la resistencia y módulo de ruptura, el espesor de la losa de concreto, el espaciamiento entre juntas transversales, apoyo en el borde de las losas, apoyo de la subrasante, aditivos, tiempo de curado y edad del concreto. (Aguas, Gómez y Sesma, 2002)

La fatiga en el concreto puede causar tanto agrietamientos transversales como longitudinales. Las primeras usualmente inician en la orilla del pavimento en medio de las juntas transversales, hasta proyectarse hasta la otra margen; las segundas en medio de las huellas de los vehículos.

“Experimentalmente se ha definido la fatiga como el número de ciclos necesarios para que el módulo de elasticidad inicial del material se disminuya en un 50% al aplicarse carga dinámica sobre una viga sometida a flexión. Por lo tanto, la vida de fatiga se define como el número de ciclos aplicados al especímen para reducir su módulo en un 50%, durante el ensayo de fatiga”. (Austroads, 2012)

3.5. Relación de esfuerzos

El número de ciclos de carga y descarga que un concreto puede llegar a resistir antes de la falla depende del nivel de esfuerzos aplicado. Esta relación de esfuerzos SR, es la relación entre el esfuerzo máximo aplicado a la losa y el módulo de ruptura del concreto. (Rao y Roesler, 2005)

$$SR = \frac{\sigma}{MR}$$ \[1\]

El esfuerzo de tensión máxima que se alcanza en la fibra extrema sometida a tensión se conoce como módulo de ruptura (MR) del concreto, que se obtiene mediante ensayos de resistencia a la flexión a 28 días en los tercios medios de la viga, aunque también se puede realizar el ensayo cargando la viga en su punto central. En ensayo consiste en someter la viga a flexión pura y registrar la carga máxima que soportó el elemento antes de fallar.

El valor del módulo de ruptura depende de las dimensiones de la viga y de la ubicación de las cargas. Normalmente las grietas aparecen en el tercio central y se puede calcular el módulo de ruptura como se muestra a continuación.

$$MR = \frac{PL}{bd^2}$$ \[2\]

Si la falla ocurre fuera del tercio medio de la viga y lo sobrepasa en más de un 5% entonces se debe aplicar la siguiente ecuación.

$$MR = \frac{3Pa}{bd^2}$$ \[3\]

donde,

- **MR** = Módulo de ruptura (MPa)
- **P** = carga máxima aplicada a la viga (N)
- **L** = longitud del claro (mm)
- **b** = ancho promedio en la cara fracturada (mm)
- **d** = profundidad promedio en la cara fracturada (mm)
- **a** = distancia promedio entre las líneas de fractura y el soporte más cercano medida en la superficie de tensión de la viga (mm)
El ACI 318-05 proporciona un modelo que relaciona el módulo de ruptura con la resistencia a la compresión a partir de un factor k que debe ser calibrado para cada mezcla, donde se establece que el módulo de ruptura es proporcional a la raíz cuadrada de la resistencia a la compresión de la mezcla.

\[MR = k \sqrt{f'_c} \] \hspace{1cm} [4]

El factor k podría resultar útil; ya que al conocer su valor aproximado se puede simplificar el diseño de mezcla. Es factible diseñar siguiendo la metodología del ACI-211 y de esta manera diseñar para la resistencia a la compresión que permita obtener el módulo de ruptura deseado. El esfuerzo aplicado se calcula a partir de la carga máxima que fue aplicada a la viga durante el ensayo y la sección del elemento.

\[\sigma = \frac{M}{S} \] \hspace{1cm} [5]

donde,

M=Momento máximo (kg cm)
S=Módulo de sección (cm2)

Finalmente puede obtenerse la relación de esfuerzos SR siguiendo la Ecuación 1.

3.6. Repeticiones de carga

El orden de aplicaciones de carga tiene un efecto significativo sobre el valor final del daño por fatiga; o sea que el número total de ciclos de carga aplicados está influenciado por la secuencia de aplicación. (Anguas et al, 2002). Se consideran las variables para montar el ensayo de fatiga de acuerdo con el reporte técnico “Preliminary Investigation of the influence of Micro-cracking on Fatigue Life of Cemented Materials”. (Austroads, 2012)

Cuando los vehículos transitán sobre la estructura de pavimento, someten las losas a esfuerzos de tensión, más no ocurre el efecto contrario, no hay compresión, por esto la carga debe aplicarse solamente en un sentido. Los pulsos de carga haversiana permiten simular este efecto en las losa.

Para el ensayo de fatiga se recomienda aplicar entre el 60% y el 90% de la carga de rotura por flexión determinada previamente, a una frecuencia de 2 Hz. El tránsito de vehículos sobre las losas lleva al material a comportarse dentro del rango lineal elástico, lo que implica que su comportamiento no depende de la frecuencia de aplicación de la carga, como es el caso de los pavimentos flexibles.

3.7. Modelos de fatiga

Los modelos mecánicos de fatiga utilizan el concepto de

La fatiga del concreto depende de varios factores, incluyendo la magnitud y posición de las cargas que producen los esfuerzos críticos; el concepto de daño acumulado contempla la suma del daño por fatiga causado por cargas de distinta magnitud y aplicadas bajo condiciones variables, sin embargo asume que el daño se incrementa linealmente. La siguiente ecuación se conoce como Ley de Miner.

\[Daño\ por\ fatiga = \sum \frac{n_i}{N_i} \] \hspace{1cm} [6]

donde,

n_i=Número de repeticiones de carga aplicadas bajo la condición i
N_i=Número de repeticiones de carga permisibles hasta la falla por fatiga bajo la condición i

De acuerdo con la Ley de Miner, los materiales deberían fallar cuando el daño por fatiga sea igual a la unidad, sin embargo debido a la variabilidad del concreto y a los diversos factores que rigen la falla por fatiga, la fractura puede presentarse para valores menores o mayores que uno.
3.8. Fibras de polipropileno

En el informe del ACI State of the Art Report on Fiber Reinforced Concrete (2002), reporta el uso de fibras sintéticas como material de construcción por primera vez en 1965. El U.S. Army Corps of Engineers (USACE), utilizó fibras sintéticas para estructuras resistentes a explosiones y mostró que al incorporar las fibras en el concreto, se formaba una mezcla de mayor ductilidad y resistencia al impacto.

El polipropileno es un polímero de hidrocarburo sintético cuya fibra está hecha con procesos de extrusión (IMCYC, 2007). Su punto de fusión y el módulo de elasticidad son bajos en comparación con otros tipos de fibras sintéticas. Ofrece una ventaja ante la exposición al fuego, pues a altas temperaturas la fibra desaparece y provee canales de alivio dentro de la estructura, por donde puede escavar el vapor, reduciendo los daños, lo que significa un beneficio de su uso. (Maccaferri, s.f.)

El polipropileno es un material hidrofóbico, es decir no absorbe agua; no reacciona químicamente con el concreto, la unión entre ambos materiales se debe a una interacción mecánica. Es una fibra fácil de manipular y no posee propiedades tóxicas lo cual facilita su colocación pues no requiere cuidados extremos. (Pujadas, 2009)

A medida que aumenta el contenido total de fibras y su esbeltez (relación entre la longitud y el diámetro equivalente), se incrementan las resistencias a la flexión, impacto, fisuración, tenacidad y ductilidad, pero se dificulta el mezclado y bombeo. Por lo tanto, existen límites prácticos para la cantidad y tamaño de las fibras dependiendo de la forma de las mismas. (Xargay y Balzamo, 2010)

No se ha registrado una variación contundente en la resistencia a la compresión o de módulo de elasticidad del concreto al incorporar fibras en la mezcla. Para porcentajes de adición mayores al 2% del volumen, se ha registrado menor trabajabilidad en el concreto, mayor sangrado, mayor segregación y mayor contenido de aire atrapado (13,9%), resultando en la disminución de la resistencia a la compresión. (ACI 544.1R, 2002)

Se ha encontrado que los cilindros que contienen fibras de polipropileno soportan cargas y grandes deformaciones sin falla explosiva; de ahí que tiene un comportamiento más dúctil que un concreto simple. (ACI 544.1R, 2002)

Se han observado leves aumentos en el módulo de ruptura para dosificaciones de polipropileno entre el 0,1% y 0,3% del volumen en comparación con la mezcla de control, sin embargo, conforme se aumenta su cantidad disminuye el módulo de ruptura, pues también disminuye la resistencia a la compresión al aumentar el contenido de aire atrapado. (ACI 544.1R, 2002).

Uno de los atributos más importantes del concreto reforzado con fibras es el mejoramiento del desempeño de la resistencia a la fatiga comparado con la mezcla de control. La incorporación de polipropileno, incluso en pequeños porcentajes (de 0,1% a 0,3%), aumenta la resistencia a la fatiga.

En Costa Rica se han utilizado fibras de polipropileno (FibroMac 12) en algunos proyectos viales como Av. 3, Av. 10 y Paseo de las Damas. La finalidad de utilizar microfibras en estos casos fue prevenir la contracción plástica y por secado, ya que se trata de concretos con alto módulo de ruptura (hasta 5,2 MPa).

4. Caracterización de los materiales

Se corroboró que los materiales tuvieron la calidad adecuada para ser utilizados como materiales de construcción de acuerdo con las especificaciones del American Society for Testing Materials (ASTM).

4.1. Agregados

El agregado fino es arena lavada de río, color café oscuro con partículas redondeadas, bien graduada. El agregado grueso es piedra cuarta (1/4") de río y procesado, de partículas angulosas y con desgaste a la abrasión de 30%. Ambos, libre de materia orgánica.

4.2. Cemento

El cemento tipo MP/AR, Modificado con Puzolana y de Alta Resistencia a sulfatos, cloruro y agua de mar, se obtiene de la molienda conjunta y uniforme de Clinker tipo Portland y Puzolana, esta última en proporciones que van del 10% al 20% en peso del cemento.
4.3. Aditivo

El aditivo utilizado es el Plastiment 931R, producido por la empresa Sika que funciona como reductor de agua de medio rango y plastificante.

4.4. Fibras de polipropileno

Las fibras de polipropileno utilizadas en esta investigación son las FibroMac 12 de la empresa Maccaferri, producida a partir de multifilamentos que ayudan a formar una mezcla homogénea. Según su fabricante, se recomienda su uso para prevenir la fisuración por retracción en concretos y morteros y recomienda su aplicación en prefabricados, pavimentos, pisos y revestimientos, utilizando una dosificación de 600 gramos por metro cúbico de concreto.

Se realizaron ensayos con tres porcentajes de adición de fibras menores al 1% del volumen total de mezcla, pues mayor a eso se da un aumento en el contenido de aire y por lo tanto disminuye la resistencia a la compresión y a la flexión, según el informe State of the Art Report on Fiber Reinforced Concrete. Se emplearon en esta investigación 900, 1800 y 2700 g/m³, FibroMac 12 que corresponde aproximadamente a un 0,1%, 0,2% y 0,3% del volumen total de mezcla, no se consideraron mayores porcentajes, pues para la colada con 0,3%, se presentaron dificultades en la trabajabilidad.

4.5. Diseño de Mezcla

Los principios de diseño de elementos reforzados con fibras sintéticas son los mismos que para elementos convencionales, incluyendo las recomendaciones de espaciamientos en las juntas para evitar agrietamientos.

Se realizaron 6 diseños de mezcla preliminares para lograr obtener el diseño con el módulo de ruptura más aproximado al deseado de 4,5 MPa. Para ello se siguió la norma ASTM C192 Método de Ensayo Normalizado para Preparación y Curado de Especímenes de Concreto para Ensayo en Laboratorio. La metodología utilizada para el diseño de mezcla se adoptó del ACI-211; sin embargo se realizaron modificaciones a partir de los resultados del pre diseño. Preliminarmente se realizaron 2 pruebas con la mezcla que se asemejó de la mejor manera, al módulo de ruptura de 4,5 MPa, para lo cual se obtuvo una resistencia a la compresión cercana a los 500 kg/cm² y un módulo de ruptura de 4,8 MPa.

Se decidió no disminuir la resistencia de la mezcla, ya que al aumentar el contenido de agua podrían presentarse problemas de segregación y sangrado. El reenvejecimiento de ambas mezclas de prueba fue de 16 cm, o sea se trata de una mezcla de consistencia líquida y muy trabajable. La relación agua-cemento utilizada fue 0,445%; obtenida a través de experimentación previa. En todos los diseños se consideró el agua de dosificación, que es el agua de diseño corregida para considerar la humedad de los áridos, tomando en cuenta el porcentaje de absorción.

4.5.1. Mezclas de concreto

Especial cuidado debe tenerse al adicionar polímeros al concreto cuando se usa el reenvejecimiento como indicador de la consistencia, dado que las fibras provocan en la matriz homogénea de concreto, un cierto grado de amarre interno que reduce la fluidez de la mezcla. Para garantizar semejanza en la elaboración de todos los concretos, previo a la incorporación de las fibras se comprobaba que el reenvejecimiento de la mezcla coincidiera con el reenvejecimiento de la mezcla de diseño, para luego adicionar las fibras y proceder a batir el concreto por 2 minutos más.

Las mezclas con adición de fibras de polipropileno del 0,2% y 0,3% del volumen total de concreto presentaron una trabajabilidad muy baja, lo cual dificultó el moldeo de los especímenes.

5. Ensayos estáticos y dinámicos

5.1. Ensayos Estáticos

Se moldearon especímenes cilíndricos de (150 x 300) mm para efectuar los ensayos de módulo de elasticidad y resistencia a la compresión, mientras que para la determinación de la resistencia a la flexión se utilizaron probetas de (150 x 150 x 535) mm. Se elaboró una mezcla de control y 3 mezclas con adición de fibra sintética (0,1%, 0,2% y 0,3% del volumen total de mezcla). Para los 4 tratamientos se fallaron 3 probetas a compresión, 3 a flexión y 3 por módulo de elasticidad a los 7 y 28 días de curado (en la cámara húmeda).

Los ensayos de resistencia a la compresión y módulo de elasticidad se realizaron en la máquina...
de compresión marca Humboldt y para las pruebas de flexión se utilizó la Máquina Universal.

Los resultados de los ensayos estáticos a los 7 días de curados reflejan que:
- Las mezclas con 0,2% y 0,3% de polipropileno presentan una resistencia a la compresión mayor que la muestras de control, en contraste con la mezcla con adición del 0,1% donde la resistencia a la compresión se reduce.
- Al aumentar o disminuir la resistencia a la compresión de la mezcla, también lo hace la resistencia a la flexión.
- El módulo de elasticidad de especímenes con polipropileno es más alto que las muestras de control, por lo que son más rígidos.

Los resultados de los ensayos estáticos a los 28 días de curados reflejan que:
- Todos los tratamientos con polipropileno presentan resistencia a la compresión mayor que la mezcla de control, a mayor fibra mayor la resistencia a la compresión del concreto.
- Los tratamientos con 0,2% y del 0,3% de polipropileno, presentan módulos resilientes mayores que la mezcla de control a los 7 días de curado, pero a la edad de 28 días se observa un cambio en la tendencia del comportamiento de la resistencia a flexión del concreto.
- El concreto con polipropileno presenta menor resistencia a la rotura por flexión que el concreto convencional; sin embargo esta no es proporcional a la cantidad de fibras adicionadas.
- El módulo de Young aumenta al adicionar las microfibras al concreto, dado que aportan rigidez a la mezcla de concreto endurecido.

5.1.1. Análisis de Varianza
Se realizó un análisis de varianza ANOVA, se compararon las medias de los 4 tratamientos para los 3 ensayos estáticos realizados a 7 y 28 días y se tomó como nivel de significancia un valor de $\alpha = 0,05$. Las hipótesis que se plantearon fueron las siguientes:

$H_0: \mu_{control} = \mu_{0,1\%} = \mu_{0,2\%} = \mu_{0,3\%}$ \hspace{1cm} [7]

$H_1: \text{al menos una de las medias es diferente}$ \hspace{1cm} [8]

Con este análisis se determinó que el único efecto significativo que causa la adición de fibras de polipropileno al concreto es el aumento en la resistencia a la compresión a 28 días. Todas las demás variaciones encontradas en los resultados de la mezcla pueden atribuirse a la variabilidad propia del concreto.

5.1.2. Porcentaje óptimo de fibra
El porcentaje óptimo de fibra se utilizó para realizar los ensayos dinámicos y se comparó con el comportamiento del concreto convencional. Se escogió el porcentaje de fibra del 0,1% del volumen total de mezcla como el óptimo, pues con este porcentaje se generó la menor reducción en el módulo de ruptura (con 0,1% disminuyó un 4,81%; con 0,2% y 0,3% se redujo 8,04% y 5,01% respectivamente); se obtiene la mayor trabajabilidad y, se acerca más a la dosificación recomendada por el fabricante de las fibras (600 g/m³).

5.2. Ensayos Dinámicos
Se realizaron ensayos de módulo dinámico y fatiga (para mezcla de control y mezcla con % óptimo de polipropileno 0,1%), siguiendo los lineamientos establecidos por Austroads (2012). El equipo de carga utilizado para llevar a cabo ambos ensayos fue el Material Test System MTS 810, en conjunto con el controlador TestStar IIS asociado al programa de obtención de datos Station Manager.

Para cada pulso de carga se obtuvo la carga aplicada, la deformación en la fibra extrema inferior de la viga y la deflexión del espécimen. Para esto se colocó una galga extensométrica en el centro de la cara inferior de la viga y se conectó al programa de obtención de datos. Además se instaló un transformador diferencial de variación lineal (LVDT por sus siglas en inglés) para medir el desplazamiento asociado a cada pulso de carga; sin embargo no se lograron resultados satisfactorios con el LVDT, por lo que se descartaron los datos recolectados.

Luego de 28 días de curado como mínimo, las probetas se sacaron de la cámara húmeda y se secaron al aire por al menos 2 días.

5.2.1. Módulo Dinámico
Neville (2005) define el módulo dinámico como aquel que se determina por medio de la vibración de una probeta de hormigón, al aplicar un esfuerzo insignificante. Austroads sugiere que la magnitud de los pulsos de carga no sea mayor que el 40% de la...
carga máxima de rotura determinada durante el ensayo de flexión. En razón de ello, se aplicaron 100 pulsos de un segundo de duración; incluyendo la aplicación de pulsos de 250 ms de carga cíclica haversiana y un descanso de 750 ms entre pulsos de carga, tal y como se presenta en la siguiente Figura.

Figura 3. Ciclo de carga para el ensayo de módulo dinámico

Además, se aplicó el 35% de la carga máxima soportada por las vigas para el ensayo de flexión (ASTM C78), que suficientemente bajo para no dañar la viga por lo que se evalúa dentro del rango elástico; pero suficientemente alto para medir las deformaciones producto del esfuerzo de tensión en el tercio central del espécimen.

Para obtener el valor de la carga máxima de rotura a la flexión, se realizó nuevamente el ensayo utilizando vigas secas al aire, en iguales condiciones de humedad que las probetas falladas para módulo dinámico y fatiga. No se tomó el valor de la carga de rotura obtenido mediante los ensayos estáticos ya que dichas vigas fueron falladas en condición húmeda y esto incide notablemente en el comportamiento a la flexión de la muestra.

Para el cálculo de los módulos dinámicos se recurrió a la teoría de la elasticidad, asumiendo que el concreto se encuentra en el rango elástico por lo que el módulo puede obtenerse con la inercia bruta de la sección, es decir la inercia no agrietada. Según la ley de elasticidad de Hooke, el módulo es la razón entre el esfuerzo aplicado y la deformación unitaria sofrida por el material. El módulo dinámico se calculó con el promedio de los últimos 50 ciclos de carga del total de 100 ciclos aplicados al espécimen, como se muestra a continuación.

\[E = \frac{MR}{\varepsilon} \]

\[\text{donde,} \]

\[E = \text{módulo dinámico del concreto (MPa)} \]

\[MR = \text{según ecuación [2]} \]

\[\varepsilon = \text{deformación unitaria en la fibra extrema en tensión (mm/mm)} \]

5.2.1.1. Resultados

A continuación se presentan los resultados de las pruebas de flexión para los ensayos dinámicos.

Cuadro 1. Ensayo de flexión

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Carga máx P (N)</th>
<th>MR (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>35 570</td>
<td>4,50</td>
</tr>
<tr>
<td>0,1% fibra</td>
<td>34 325</td>
<td>4,38</td>
</tr>
</tbody>
</table>

Se presenta una reducción del 3,5% en la resistencia a la flexión de las muestras con polipropileno, resultado esperado pues coincide con el comportamiento de las muestras ensayadas para las pruebas estáticas. La variación entre ambos tratamientos no necesariamente se debe al contenido de polipropileno.

Cuadro 2. Módulos dinámicos (concreto seco), con 35% de carga máxima de rotura, vigas secas al aire.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Mezcla de control</th>
<th>Mezcla con fibra polipropileno %Opt 0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P<sub>max</sub> (N)</td>
<td>(\varepsilon) (mm/mm)</td>
</tr>
<tr>
<td>1</td>
<td>13 189,37</td>
<td>6,928E-05</td>
</tr>
<tr>
<td>2</td>
<td>12 415,62</td>
<td>5,837E-05</td>
</tr>
<tr>
<td>3</td>
<td>14 250,63</td>
<td>6,431E-05</td>
</tr>
</tbody>
</table>

Estadística: Promedio 28,4 | Promedio 24,41
Desviación Estándar 1,50 | Desviación Estándar 0,43

El módulo dinámico de la mezcla polipropileno, presenta una variación 14,28% respecto de la mezcla de control, situación contraria a lo sucedido con los ensayos estáticos. Por lo tanto, el concreto con polipropileno resulta más flexible, a menor
correlación de la recta de mejor ajuste para ambos modelos de fatiga, es aceptable, pues el valor del r² es cercano a la unidad. Es así como se define que la ecuación de fatiga para:

- Concreto convencional (control), es:
 \[\log(N) = \log(5.451) - 24.6 \cdot \log(SR) \]
 \[10\]

- Concreto modificado con 900 g de FibroMac12, por metro cúbico de mezcla (0,1%), es:
 \[\log(N) = \log(25.21) - 14.6 \cdot \log(SR) \]
 \[12\]

\(N\) = número de repeticiones de carga aplicadas hasta la falla
\(SR\) = Relación de esfuerzos

Una vez obtenidos ambos modelos de fatiga se procede a realizar el diseño mecanicista del concreto.

6. Diseño mecanicista

El diseño mecanicista de pavimentos permite proyectar el daño de la lose a largo plazo, se revisa la estructura diseñada con un modelo de deterioro para evaluar el desempeño del pavimento a lo largo de su vida útil. Se introduce el modelo de deterioro de fatiga, obtenido anteriormente mediante ensayo de laboratorio, para los dos concretos, convencional y con FibroMac 12 en un 0,1%.

6.1. Diseño de la estructura de pavimento rígido

La estructura de pavimento se diseño basado en el método AASHTO 93, con el tránsito promedio diario (TPD) de la encuesta de carga real vehicular realizada por LanammeUCR para la Ruta Nacional N°1, en sentido de tránsito Cañas-San José, de enero a setiembre del 2009. Aplicando un periodo de diseño de 20 años y un factor de crecimiento del 4% (vías nacionales), se determinó un ESAL de nueve millones ochocientos cuarenta y cinco mil ejes equivalentes de 80 kN. Además, se consideraron los siguientes parámetros de diseño del pavimento, según del AASHTO 93: \(Z_{ref} = -1.645\); \(S_{ref} = 0.3\); \(J = 3.6\); \(C = 1.0; P_{ref} = 2.4; P_{ref} = 2.5; \Delta PSI = 2.0 y k(PCI) = 160\).

La lose de concreto convencional resultó ser más delgada, debido a que el concreto con fibra posee un módulo de ruptura menor. Luego se evaluaron ambas loses de las ecuaciones de fatiga, pero con valores típicos de los materiales presentes en Costa Rica dados por Porras (2009).

Figura 7. Diseño de lose de concreto simple y con adición de polipropileno.

Con el software de elemento finito ISLAB2000, creado por ERES Consultants, se calcularon los esfuerzos y deformaciones en las loses de concreto, producto de la aplicación de carga del camión de diseño. El camión de diseño elegido es el más representativo (60% del total de vehículos), en este caso el T3-52, vehículo con mayor relación de cargas respecto del número de llantas (18 ruedas), por lo que produce más daño a la estructura. Además, como está autorizado para transportar 39 toneladas, por tener un eje trígimen en lugar de tándem, distribuye de manera más eficiente las cargas hacia el pavimento, por eso el daño que realiza es menor. Se utilizó una presión de inflado de las llantas de 120 psi según la sugerencia de la guía MEPDG.

Figura 8. Camión de diseño T3-52
Fuente: Allen y Badilla, 2011
(Modificado por: Autor)

Se consideró un pavimento tipo JPCP con dovelas transversales, 85% de eficiencia en la transferencia de carga del en sentido longitudinal, y 50% en el sentido transversal, según la guía MEPDG. Se incorporó un espaldón de 0,5 metros, sin juntas transversales, para 10% de la eficiencia de transferencia de carga, según Vega (2012).
6.2.1. Agrietamientos transversales de abajo hacia arriba

Se presentan cuando el eje direccional (mayor relación de carga entre número de llantas) se posiciona en el centro longitudinal de la losa, muy cerca del borde o hacia el espaldón. Las cargas de tránsito generan esfuerzos de tensión en la parte inferior de la losa que pueden ser incrementados cuando se presenta alabeo por temperatura.

\[T_s > T_l \]

Figura 10. Agrietamiento de abajo hacia arriba de la losa. Fuente: Román, 2008

Las diferencias de temperatura entre la parte superior e inferior de la losa, inciden en los esfuerzos críticos. Durante el día, la parte superior de la losa queda expuesta al sol; la losa se expande en la superficie y adopta una curvatura convexa, por lo que se forma un vacío o pérdida de soporte bajo el centro de la losa. Cualquier fuerza que restrinja el movimiento de la losa, incluyendo el peso propio del pavimento, va a producir un esfuerzo, que por el alabeo de la losa, incrementan los esfuerzos de tensión inferior y origina agrietamiento de abajo hacia arriba del elemento. En este estudio no se toma en cuenta el gradiente térmico pues en Costa Rica no se presentan variaciones extremas en la temperatura a lo largo del día.

6.2.2. Agrietamientos transversales de arriba hacia abajo

El gradiente de temperatura negativo se presenta en las noches, la losa adopta una curvatura cóncava que forman vacíos en los extremos del elemento dando lugar a un incremento en los esfuerzos de tensión en la superficie del pavimento. Si estos esfuerzos de tensión superan los esfuerzos de compresión provocados por el tránsito, entonces se presenta el esfuerzo crítico en la superficie de la losa y ocurre agrietamiento de arriba hacia abajo.

\[T_s < T_l \]

Para que se presente la condición crítica debe haber una geometría de losas que permita que dos ejes del camión se coloquen sobre los extremos del elemento simultáneamente. Bajo esta configuración...
Los anteriores resultados se compararon contra los resultados utilizando la ecuación brindada por la guía MEPDG, el cuadro. No se incorpora el pavimento con adición de fibra ya que dicha guía no presenta ningún modelo de deterioro para concreto con polipropileno.

Cuadro 7. Resultados del análisis elemento finito

<table>
<thead>
<tr>
<th>Tipo de concreto</th>
<th>Criterio de falla</th>
<th>Simple</th>
<th>Con Fibra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Capic</td>
<td>1,68</td>
<td>0,83</td>
<td>1,66</td>
</tr>
<tr>
<td>MR</td>
<td>4,50</td>
<td>4,50</td>
<td>4,38</td>
</tr>
<tr>
<td>SN</td>
<td>0,37</td>
<td>0,18</td>
<td>0,38</td>
</tr>
<tr>
<td>Repeticiones</td>
<td>1,971E+11</td>
<td>6,443E+18</td>
<td>3,673E+10</td>
</tr>
<tr>
<td>Admisibles</td>
<td>+18</td>
<td>+07</td>
<td>+12</td>
</tr>
<tr>
<td>N</td>
<td>1,335E+07</td>
<td>1,565E+16</td>
<td>-</td>
</tr>
<tr>
<td>Mepdg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Del cuadro anterior se deriva que las repeticiones de carga admisibles varían según el modelo de deterioro aplicado. Esto demuestra la necesidad de calibrar el modelo obtenido mediante pruebas de laboratorio con factores de correlación en campo. En todos los escenarios planteados, los esfuerzos de tensión producidos por el vehículo de diseño llevan a relaciones de esfuerzos muy bajas y por ende las repeticiones de carga admisibles que puede soportar el pavimento resultan mucho mayores que el ESAL de diseño (9,8 millones de ejes equivalentes). Según los resultados obtenidos, en ninguno de los casos se presenta un daño por fatiga significativo, a pesar de que los camiones T3-52 representen el 60% de los vehículos que transitán por la ruta.

Tal y como se habla mencionado en el apartado 4.2.21 anterior, el posible error que se produjo en el ensayo de fatiga durante la falla del espécimen con relación de esfuerzos del 75%, afecta los resultados obtenidos con la modelación del software de elemento finito. La cantidad de repeticiones de carga admisibles hasta la falla en el concreto con fibras es menor que para el concreto convencional, según la ecuación de fatiga obtenida para la mezcla con polipropileno, cuanto menor sea el esfuerzo aplicado menor será la resistencia a la fatiga.

Según el análisis de resultados realizado para los ensayos de fatiga, el concreto con adición de fibras llega a ser más resistente a la fatiga que el concreto simple, lo cual no se refleja en el modelo.

7. Conclusiones y recomendaciones

Las pruebas de caracterización de los materiales indicaron que los agregados y el cemento son de buena calidad y son aptos para la fabricación de mezclas de concreto.

A pesar de que el FibroMac12 es un material hidrofóbico, su incorporación afecta notablemente la relación agua-cemento, pero porque las fibras generan un amarre dentro de la matriz cementante, afectando la trabajabilidad. Al variar la relación agua-cemento de la mezcla, se incrementa la resistencia a la compresión y aumenta el módulo de elasticidad; sin embargo el incremento en la rigidez del concreto infiere negativamente en el comportamiento a la flexión de la mezcla pues se disminuye el módulo de ruptura.

Es posible que la utilización de fibras mejore el desempeño de la mezcla frente a la contracción por secado, dada la interacción mecánica de las fibras con la mezcla en estado fresco; pero debe usarse dosificaciones cercanas a las recomendadas por el fabricante para no afectar la relación A/C.

A los 28 días de edad, las mezclas de los distintos tratamientos no presentaron variaciones significativas en la resistencia a la flexión ni en el módulo de elasticidad.

Puede afirmarse que la adición de fibras de polipropileno incide en la ganancia de resistencia a la compresión de la mezcla, para dosificaciones de hasta 0,3% del volumen de mezcla. Con dosis mayores se recomienda, siempre y cuando se calibre el diseño de mezcla, el uso fluidificantes para mejorar la trabajabilidad del concreto.

Se logró implementar satisfactoriamente el ensayo de fatiga para mezclas de concreto con adición de fibras sintéticas en el LanammeUCR.

El concreto con adición de fibras de polipropileno gana tenacidad, pues su módulo de elasticidad dinámico se disminuye, o sea el material se vuelve más deformable, siempre y cuando la aplicación de cargas sea cíclica y se logre someter el elemento a la flexión. No fue posible comparar los módulos
ésticos y dinámicos obtenidos en esta investigación, ya que ambos ensayos se ejecutaron bajo condiciones de humedad diferentes.

Las mezclas con adición de fibra presentan mejor comportamiento a la fatiga por cargas dinámicas, que el concreto convencional con incrementos de 42 y 55% (Cuadro 4). Además, gana tenacidad, pues su módulo de elasticidad dinámico disminuye en un 14% (Cuadro 6), o sea se vuelve más deformable.

La dosificación optima de fibra no afecta las propiedades mecánicas del concreto determinadas mediante ensayos estáticos, pues tanto el concreto de control como el concreto con 0.1% de polipropileno superaron la vida útil por fatiga.

Los modelos de fatiga obtenidos aplican únicamente para los materiales utilizados en la presente investigación.

Con el diseño mecanico de pavimento realizado, se encontró que la losa para concreto con adición de fibra de polipropileno supera apenas en 0,1 pulgadas (2,54 mm) la losa de concreto simple. Por lo tanto, el uso de microfibras no reduce el espesor del elemento estructural.

Con la incorporación de los modelos de deterioro en el diseño no se alcanzaron los resultados esperados, debido a la necesidad de aplicar un factor de correlación de campo para las ecuaciones obtenidas mediante los ensayos dinámicos.

No se logró representar adecuadamente el criterio de falla por agrietamiento transversal de arriba hacia abajo, dado que se excluyó de la modelación el efecto del gradiente térmico en el incremento de los esfuerzos de tensión.

Con respecto al número de pruebas realizadas para esta investigación, podría aumentarse la cantidad de probetas ensayadas con el fin de aumentar los grados de libertad utilizados en los análisis de varianza ANOVA y así comprobar la significancia de los resultados.

Los modelos de fatiga obtenidos sirven como aporte inicial al tema de la fatiga del concreto en Costa Rica. Deberán calibrarse y depurarse mediante la aplicación de más pruebas, aprovechando los recursos tecnológicos disponibles para su realización. Para mejorar la modelación realizada en el software ISLAB2000 es necesaria la calibración de parámetros y creación de bases de datos de todas las variables implicadas.

Se recomienda continuar esta investigación utilizando el HVS (Heavy Vehicle Simulator) recientemente adquirido por el LanammeUCR, para establecer correlaciones entre las pruebas de laboratorio y campo, y calibrar el modelo obtenido.

Referencias

Evaluación del Comportamiento de la Fatiga de una Mezcla de Concreto MR-45 MPa con Adición de Polipropileno. [Elizondo et al]

