

Público general: ¢90.000 +2% IVA
Estudiantes activos: ¢45.000 + 2%IVA

Banco: Banco Nacional de Costa Rica. Nombre de Beneciario: Fundación de la UCR para la Investigación. Número de personería Jurídica: 3-006-101757

10 y 11 de marzo, de 8:30 a.m. a 4:30 p.m. (12 horas efectivas)

Traducción simultánea

Estudiantes de Ingeniería Civil, administradores y dueños de puentes tanto de organismos públicos (MOPT, CONAVI, Municipalidades) como privados, profesionales vinculados con alguna de las actividades relacionadas con la gestión de puentes.

Forma de pago

Colones Cuenta Cliente: 15100010011400776 / Colones Cuenta Corriente: 100-01-000-140077-9 / C.IBAN Colones# CR88015100010011400776

Objetivo General:

Capacitar sobre los conceptos teóricos y prácticos fundamentales del estado del arte de los Sistemas de Gestión de Puentes (SGP), como una herramienta clave en el uso eficiente de los recursos en materia de puentes.

Objetivos Específicos:

- -Establecer el marco teórico de línea base de un Sistema de Gestión de Puentes (SGP).
- -Presentar los componentes claves de un SGP para su adecuado funcionamiento.
- -Aprender sobre herramientas complementarias pero necesarias (como la comunicación o los sistemas de información geográfica), para la correcta ejecución del SGP.
- -Conocer los pasos necesarios para la implementación de un SGP y de la mejora continua del mismo.

Cronograma

Día 1

Sesión 1:

- -Introducción a los Sistemas de Gestión de Puentes (SGP) disponibles.
- -Proceso de negocios de gestión de puentes con el rol del SGP en cada etapa.
- -Conceptos clave tales como análisis a nivel de sistema versus análisis a nivel de puente, y expectativas de la exactitud y la precisión.
- -Información de inventario de puentes.

Sesión 2:

- -Proceso e información de la inspección, incluyendo la condición, la seguridad y la movilidad.
- -Medidas de desempeño y gestión.
- -Predicción del deterioro futuro.
- -Predicción de costos futuros.

Día 2

Sesión 3:

- -Análisis de costos de ciclo de vida.
- -Costos de los usuarios y su relación con la seguridad, la movilidad y el riesgo.
- -Desarrollo de políticas que minimizan el costo a largo plazo.
- -Priorización utilizando medidas de desempeño.

Sesión 4:

- -Comunicando y negociando las necesidades de los puentes.
- -Herramientas de comunicación, incluyendo gráficos, multi-media, y sistemas de información geográfica.
- -Implementando un Sistema de Gestión de Puentes.
- -Mejora continua del proceso de negocios.

Diseño CTT/KZV 2020

Reseña Curricular

Paul D. Thompson 📁

Formación académica

- -C.S.S., Administration and Management, Harvard University Extension (1987)
- -M.S., Transportation, Massachusetts Institute of Technology (1982)
- -B.S., Civil Engineering, University of Washington (1980)

Experiencia profesional:

- -Principal, Cambridge Systematics, Inc. Research/-Assistant, Massachusetts Institute of Technology/-Planning and Finance Depts., Tri-County Metropolitan Transportation District of Oregon (Tri-Met)
- -Actualmente se desempeña como consultor internacional en temas de sistemas de gestión de activos e ingeniería económica.

Paul D. Thompson es un experto internacionalmente reconocido en sistemas de gestión e ingeniería económica, incluyendo investigación, diseño y desarrollo de procesos analíticos para gestión de activos de transporte. El Sr. Thompson es una de las autoridades líderes a nivel mundial en la planificación por medio de ciclo de vida respecto a las inversiones de infraestructura, incluyendo financiamientos y tiempos óptimos para mantener las carreteras y puentes en funcionamiento al mínimo costo. Él ha trabajado como consultor en esta área con agencias de transportes a nivel estatal, local e internacional desde 1980, además de haber sido el autor de la mayoría de las principales guías AASHTO e internacionales sobre implementación de gestión de activos.

Él fue el co-autor del estudio del DOT de Florida acerca de los riesgos relacionados con puentes en gestión de activos, y del Sistema de Gestión de Riesgo y Mejora en Puentes de Minnesota. Para el proyecto de NCHRP 20-07 Task 378, él desarrolló un análisis comprensivo sobre el riesgo en puentes considerando 16 tipos de desastres y peligros, incluyendo terremotos, deslizamientos, tormentas, fuertes vientos, inundaciones, escorrentías, vida silvestre, temperaturas extremas, inestabilidad ocasionada por permacongelamiento, sobrecarga, colisiones por sobre altura, colisiones de camiones, colisiones de barcos, sabotajes, deterioro avanzado y fatiga. Para proyectos en Alaska, Colorado, Montana, Tierras Federales Occidentales y NCHRP 24-35, él ha ayudado a desarrollar el marco de referencia para el nuevo campo de gestión de activos geotécnicos, incluyendo terraplenes en autopistas, inestabilidad de taludes, muros de retención y sistemas de protección contra la caída de piedras, donde el riesgo es la preocupación principal.

El Sr. Thompson fue el co-autor de las primeras dos ediciones de la Guía para Gestión de Activos de Transporte (TAM) de AASHTO. Él participó en la redacción de los 9 planes estatales TAM basados en riesgo. Actualmente, él está desarrollando un plan que incluye una nueva metodología de implementación y gestión comprensiva de recursos para el FHWA, la cual es capaz de realizar análisis costo-beneficio en pavimentos, puentes y otros tipos de activos. Para el Departamento de Transporte e Instalaciones Públicas de Alaska, él preparó una Síntesis y Plan de Trabajo para la Implementación de Gestión de Activos que abarca toda la infraestructura de este departamento, incluyendo autopistas, puentes, transporte público, aeropuertos, ferris, edificios y equipamiento.

El Sr. Thompson ha sido el gerente y el principal arquitecto del programa de implementación multi-contrato para Pontis (llamado actualmente AASHTOWare Bridge Management – BrM). Él ha proporcionado la implementación y personalización de servicios de soporte entre Pontis y BrM para más de la mitad de los estados y para otros países. Él ha diseñado y/o administrado el desarrollo de más de una docena de sistemas de gestión de puentes, pavimentos y sistemas de transporte público mundialmente. Para FHWA, Florida, Alabama, Virginia y Kansas, él ha desarrollado modelos de deterioro en elementos de puentes utilizando datos sobre el estado y condición de los mismos. Para FHWA, Florida, Montana, Minnesota, Ohio, Nevada, Texas, Alabama, Kentucky, British Columbia y en el reporte NCHRP-590, él ha desarrollado una hoja de datos acerca de modelos de costo sobre la vida útil en puentes, la cual es capaz de evaluar el alcance y alternativas en proyectos.