

CONTROL DE COMPACTACION DE CAPAS ASFALTICAS

JULIO 2004

INDICE

MAT	ERIA		PAGINA
1.	Introd	ducción	01
2.	Esqu	ema experimental	01
	2.1	Etapa Nº 1	01
	2.2	Etapa N° 2	04
	2.3	Descripción del trabajo de campo y laboratorio (etapa Nº1)	05
3.	Análi	sis de resultados	07
4.	Espe	cificaciones técnicas para la compactación de capas asfálticas	08
5.	Conc	clusiones	08
6.	Reco	omendaciones	09
7.	Biblio	ografia	10

1. INTRODUCCIÓN

Se presenta un análisis de distintos procedimientos utilizados para el control de compactación de capas asfálticas, de conformidad con la normativa que regula esta técnica de control de calidad.

El estudio realizado incluye capas con espesores diferentes, colocadas en distintos proyectos, así como especímenes con diferentes formas geométricas y grados de absorción de agua.

El trabajo experimental se dividió en dos etapas. En la primera se estudió la viabilidad técnica del muestreo de campo y la ejecución de dos procedimientos de ensayo de laboratorio para determinar el porcentaje de vacíos en las muestras tomadas. Así mismo, se analizaron los principales factores que afectan la determinación de los vacíos de la mezcla asfáltica en laboratorio. La segunda etapa se realizó con el objetivo de verificar la viabilidad técnica de determinar los vacíos de la mezcla asfáltica en el laboratorio, siguiendo tres procedimientos diferentes de ensayo.

2. ESQUEMA EXPERIMENTAL

2.1 Etapa Nº1

Dentro del esquema experimental (Figura Nº1) se consideraron los siguientes aspectos:

- -Espesor de la capa asfáltica
- -Muestreo en campo por medio de núcleos y bloques
- -Forma del espécimen: cúbica o cilíndrica
- -Absorción de agua
- -Determinación del volumen del espécimen por el método saturado superficie seca (ASTM D 2726-00 "Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures"), y por el método de recubrir los especímenes con "parafilm" (ASTM D 1188-96, reapproved 2002, "Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples")

En la Tabla Nº1 se detalla la ubicación y el espesor de la capa asfáltica, de las muestras analizadas. En esta tabla se puede apreciar, que en este estudio se consideraron sobrecapas con espesores en el rango de 3.0 cm a 9.0 cm. Estos puntos de muestreo se hicieron en el Valle Central, la zona Atlántica y Norte del país.

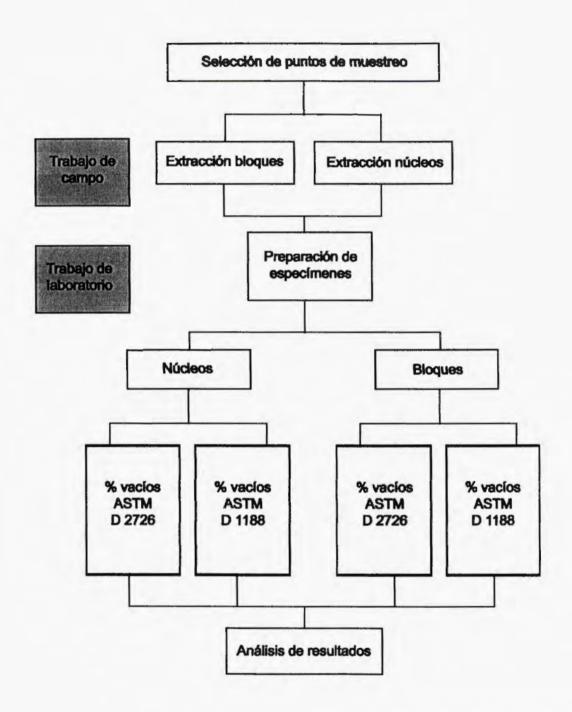


Figura No. 1: Esquema experimental, etapa No. 1

Tabla No. 1: Descripción de puntos en estudio

Punto (fecha de muestreo)	Ubicación	Espesor sobrecapa asfáltica nueva (cm)	Espesor capa asfáltica subyacente (cm)	
1 (17/01/03)	Ruta 221. Curridabat - Concepción de Tres Ríos	6.0	5.0 capa asfáltica subyacente 40.0 base granular	
2 (03/02/03)	Y Griega - San Francisco de Dos Ríos	6.0	5.0 capa asfáltica subyacent	
3 (06/02/03)	Frente Sada Tapia, La Sabana	6.5	4.0 capa asfáltica subyacent	
4 (04/02/03)	San Francisco de Dos Ríos	6.0	6.0 capa asfáltica subyacent	
5 (21/02/03)	La Valencia, Heredia	6.0	8.0 capa asfáltica subyacent	
6 (17/03/03)	Guachipelín, Escazú	7.0	5.0 capa asfáltica subyacent	
7 (20/03/03)	Piedades de Santa Ana	7.0	4.0 capa asfáltica subyacent 6.0 base asfáltica	
8 (27/08/03)	San Carlos. Frente al Liceo	50	4.0 capa asfáltica subyacent	
9 (29/09/03)	Ruta 34. Quepos - Parrita, 16+800	7.0	Existe base estabilizada	
10 (01/10/03)	Ruta 34. Quepos - Parrita, 14+700	6.0	5.0 capa asfáltica subyacen	
11 (21/10/03)	Ruta 34. Quepos - Parrita, 10+910	9.0	7.0 capa asfáltica subyacen	
12 (13/01/04) Ruta 10. Siquirres - Turrialba, 10+250		6.0	5.0 capa asfáltica subyacen	
13 (15/01/04)	Ruta 10. Siguirres - Turrialba, 9+750	6.0	7.0 capa asfáltica subyacen	
14 (04/02/04)	Ruta 10. Siguirres - Turrialba, 7+150	9.0	2.5 capa asfáltica subyacen	
15 (05/02/04)	Ruta 10. Siguirres - Turrialba, 7+100	6.0	4.0 capa asfáltica subyacen	
16 (11/02/04)	Ruta 10. Siguirres - Turrialba, 5+950	6.0	-	
17 (12/02/04)	Ruta 10. Siquirres - Turrialba, 5+360	5.5	5.0 base granular mejorada con cemento	
18 (13/02/04)	Ruta 10. Siquirres - Turrialba, 5+150	6.0	-	
19 (23/03/04)	Ruta 2. Pérez Zeledón - Buenos Aires, 11+1150	4.5	12.0 base estabilizada nuev	
20 (31/03/04)	Carmiol. Por centro donde se cuida los niños de la universidad	5.0	8.0 capa asfáltica subyacen	
21 (31/03/04	Cedros. Antes de llegar a la intersección hacia Lourdes	4.5	4.5 capa asfáltica subyacen	
22 (31/03/04)	B° Escalante. Frente a Ofiplaza del Este	4.0	4.0 capa asfáltica subyacen	
23 (02/04/04)	23 (02/04/04) Atras del Novacentro (carretera que comunica Mall El Dorado con Novacentro)		4.0 capa asfáltica subyacen	
24 (12/04/04)			3.5 capa asfáltica subyacen	
25 (12/04/04)	25 (12/04/04) La Trinidad - Moravia		8.0 capa asfáltica subyacen	
26 (13/04/04)	26 (13/04/04) Ruta 4, Sarapiqui, 3+000		1.0 capa asfáltica subyacer	
27 (13/04/04)	Ruta 4, Sarapiquí, 7+000	4.0	2.0 capa asfáltica subyacer	
28 (13/04/04)	Ruta 249, Teresa - Guápiles 4+000	3.5	7.0 capa asfáltica subyacer	
29 (13/04/04)	Ruta 249, Teresa, Guápiles 12+000	6.0	-	

Punto (fecha de muestreo)	Ubicación	Espesor sobrecapa asfáltica nueva (cm)	Espesor capa asfáltica subyacente (cm)
30 (14/04/04)	Ruta 36, Limón, Aeropuerto	4.0	1.5 capa asfáltica subyacente
31 (14/04/04)	Ruta 36, Limón, Aeropuerto	3.5	1.5 capa asfáltica subyacente
32 (14/04/04)	Ruta 36, Limón, Aeropuerto	4.0	1.5 capa asfáltica subyacente
33 (15/04/04	Ruta 702, Bajo Los Rodríguez	4.0	2.0 capa asfáltica subyacente
34 (15/04/04)	Ruta 141, Florencia - El Tanque	4.0	1.5 capa asfáltica subyacente
35 (15/04/04)	Ruta 141, Tanque - Javillos	4.5	2.0 capa asfáltica subyacente
36 (15/04/04)	Ruta 142, Tanque - La Fortuna	4.0	2.0 capa asfáltica subyacente
37 (16/04/04)	Ruta 142, Tilarán - La Fortuna	3.0	1.5 capa asfáltica subyacente
38 (16/04/04)	Ruta 142, La Fortuna - El Tanque	3.5	1.5 capa asfáltica subyacente
39 (16/04/04)	Ruta 4, La Fortuna - Monterrey	3.0	1.0 capa asfáltica subyacente
40 (21/04/04)	Heredia - San Isidro	3.5	-
41 (21/04/04)	Moravia - Doña Lela	4.5	-

2.2 Etapa N°2

En la segunda etapa, el muestreo en campo se llevó a cabo por medio de núcleos. Estos especímenes se ensayaron por tres procedimientos diferentes, para determinar el porcentaje de vacíos en la mezcla asfáltica en laboratorio. Estos procedimientos son: método de sumergir el espécimen en parafina (AASHTO T 275-91 (2000), "Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens")" y los dos métodos utilizados en la primera fase, de acuerdo con el esquema experimental que se muestra en la Figura N°2.

Figura No. 2: Esquema experimental, etapa No. 2

Tabla No. 2: Descripción de puntos en estudio, etapa No. 2

Punto (fecha de muestreo)	Número de muestras	Ubicación	Espesor capa asfáltica nueva (cm)	% vacios
1 (22/06/04)	21	B° Escalante. Frente a Ofiplaza del Este	4.0	Alto
2 (23/06/04)	21	San Isidro de Heredia	3.5	Bajo
3 (23/06/04)	21	Moravia - Ruta 32	4.5	Medio

Para la aplicación de los tres métodos de ensayo, se seleccionaron tres conjuntos de muestras, diferentes entre sí, por el grado de compactación. Ver Tabla Nº2. En el Anexo Nº2 se presentan los resultados de laboratorio para la segunda etapa.

2.3 Descripción del trabajo de campo y laboratorio (etapa Nº1)

En la primera etapa, en cada uno de los puntos en estudio, se realizó un trabajo de campo y otro de laboratorio. El trabajo de campo consistió en tomar un bloque de mezcla asfáltica de 40X40 cm; y 6 núcleos de 10.16 cm de diámetro, extraídos al lado del bloque, (ver Figura N°2). En el procedimiento de muestreo se incluye la manipulación y el transporte adecuados de las muestras.

Una vez que las muestras ingresan al laboratorio, inicia la segunda parte. Del bloque se cortan 4 cubos, de 8.5 cm de lado y una altura similar al espesor de sobrecapa colocado. Posteriormente, 2 de éstos bloques son ensayados por el método saturado superficie seca (ASTM D 2726-00 "Standard Test Method for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures") y los otros con el método de recubrir el espécimen con "parafilm" (ASTM D 1188-96, reapproved 2002, "Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples"), ver Figura Nº3.

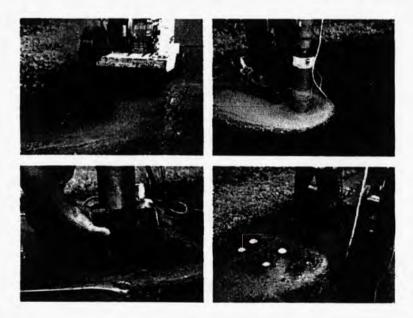


Figura No. 3: Proceso de muestreo

Del mismo bloque, se obtiene la densidad máxima teórica (ASTM D 2041-03, "Standard Test Method for Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures"). De los 6 núcleos, 3 son ensayados por el método de saturado superficie seca y los restantes por el método de recubrir el espécimen con "parafilm". La altura de corte de los núcleos es similar al espesor de la sobrecapa colocada. Ver Figura Nº4.

Nota: En algunos casos se extrajeron 4 núcleos y no 6 núcleos.

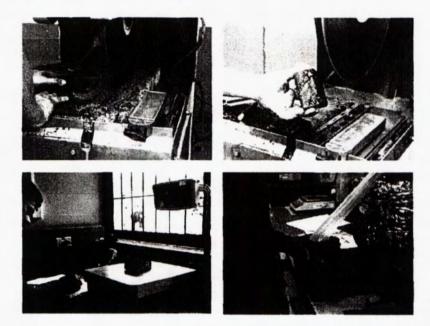


Figura No. 4: Proceso en laboratorio con los bloques

Finalmente, para cada espécimen se calculó el porcentaje de vacíos de aire. En el Anexo I se muestra un resumen con los siguientes datos para cada punto de estudio: espesor de sobrecapa nueva. espesor la muestra al cual se ensayaron las muestras, porcentaje de absorción de agua por volumen y porcentaje de vacíos de aire promedio.

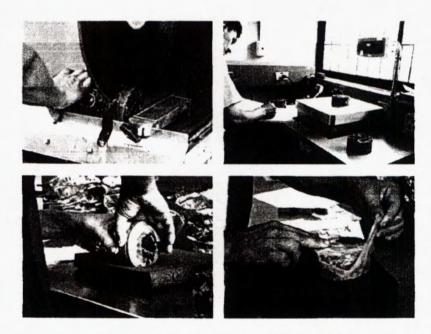


Figura No. 5: Proceso en laboratorio con los núcleos

3. ANÁLISIS DE RESULTADOS

Para evaluar la significancia estadística de diferencias en el porcentaje de vacíos de aire, se realizan dos análisis de varianza. El primer análisis incluye 4 factores experimentales, los cuales se mencionan a continuación con sus respectivos niveles:

- % de absorción de agua por volumen: mayor o menor a 2%
- forma del espécimen de ensayo: núcleo o bloque
- método de ensayo saturado: superficie seca o con parafilm
- espesor de colocación: mayor o menor a 5.0 cm.

Tabla No. 2: Análisis de varianza para el parámetro "porcentaje de vacíos"

Parámetro		Significand	cia del factor exp	erimental (*)	
% vacíos		Variables			
	Absorción	Forma	Método	Espesor de colocación	Ninguna
	Sí (**)	No	Sí (**)	No	-

- (*) nivel de confianza del 90%
- (**) efecto significativo con un nivel de confianza estadística de más del 99%

En ambos casos resulta que tanto el porcentaje de absorción de agua, como el método de ensayo, determinan un cambio significativo en el porcentaje de vacíos. No hay evidencia, al 90% de confianza, de que la forma del espécimen ó el espesor de la capa asfáltica colocada, se relacionen con cambios significativos en el porcentaje de vacíos.

Como algunos especímenes se cortaron y se ensayaron, a un espesor menor al que fue colocado en el pavimento, se hizo el análisis de varianza para determinar su posible efecto en los resultados obtenidos (ver Tabla Nº3). Dicho análisis mostró que los cortes realizados a los especímenes no indujeron cambios en los resultados de vacíos obtenidos.

Tabla No. 3: Análisis de varianza para el parámetro "% vacíos" (con espesor de corte)

Parámetro	Significancia del factor experimental (*)				
% vacíos		Vari	ables		Interacción
	Absorción	Forma	Método	Espesor de corte	Ninguna
	Sí (**)	No	Sí (**)	No	-

- (*) nivel de confianza del 90%
- (**) efecto significativo con un nivel de confianza estadística de más del 99%

Adicionalmente, con el propósito de conocer sobre la viabilidad de determinar en el laboratorio el contenido de vacíos de la mezcla, considerando diferentes espesores de capa y grados de absorción, se ensayaron sesenta y tres especímenes, aplicando tres diferentes procedimientos de ensayo (saturado superficie seca, "parafilm" y el método de la parafina). Los resultados se presentan en el Anexo 2.

4. ESPECIFICACIONES TÉCNICAS PARA LA COMPACTACIÓN DE CAPAS ASFÁLTICAS

La gran variabilidad que se determinó en el porcentaje de vacíos de compactación en las capas asfálticas muestreadas, denota que estos procesos no pueden servir de base para hacer una revisión y "ajuste" de las especificaciones técnicas.

Para efectuar dicha tarea, se requiere una acción coordinada con el CONAVI, que permita hacer un monitoreo y un muestreo para el análisis de la compactación en condiciones debidamente controladas, donde el proceso de compactación se realice siguiendo los procedimientos correctos que rigen el diseño, transporte, colocación y compactación de la mezcla asfáltica.

5. CONCLUSIONES

- No se encontró ninguna razón técnica, ni en la extracción de muestras en el campo, ni en la ejecución de los ensayos de laboratorio; que impida realizar el control de calidad de la compactación de capas asfálticas en razón de su espesor.
- No se encontró ninguna razón técnica, que impida la realización del ensayo de laboratorio, en ninguno de los procedimientos utilizados (saturado superficie seca, ASTM D 2726; recubrir los especímenes con "parafilm", ASTM D 1188 o el método de sumergir los especímenes en parafina, AASHTO T 275).
- Se encontró que el porcentaje de absorción determina un cambio significativo en el porcentaje de vacíos, al comparar el método de "parafilm" (ASTM D 1188) con el método saturado superficie seca (ASTM D 2726).
- En virtud de la gran variabilidad que se determinó en el porcentaje de vacíos de las capas asfálticas, no es posible hacer una revisión o "ajuste" de las especificaciones técnicas, para el control de la calidad de la compactación de capas asfálticas.

6. RECOMENDACIONES

- Continuar aplicando la normativa técnica de la AASHTO, para la determinación en el laboratorio del porcentaje de vacíos de las capas asfálticas, o sea:
- Seguir usando el método de extracción de núcleos con broca de diamante
- Calcular los vacíos de la mezcla por el método saturado superficie seca (AASHTO T 166) si la absorción es menor a 2% y con el método de sumergir los especímenes en parafina (AASHTO T 275) si la absorción de agua es mayor al 2%.
- 2. Aplicar la normativa anterior, independientemente del espesor de la capa asfáltica.
- Tomando como referencia la normativa internacional, y para mezclas densas convencionales, se recomienda el siguiente porcentaje de vacíos, en función de los ejes equivalentes en el carril que soporta la mayor cantidad de tráfico pesado

Ejes equivalentes (*) (millones)	Porcentaje máximo de vacíos (**)
< 4	8%
≥ 4	7%

Nota: (*) total de ejes equivalentes de 8200 kg en el carril que llevará la mayor cantidad de tráfico pesado, durante 20 años

(**) vacíos calculados a partir de la densidad máxima teórica

- 4. Por la vía de las especificaciones especiales, ya sea por parte del diseñador del pavimento o por parte de la Administración, y para proyectos específicos que así lo ameritan en virtud de las condiciones del tráfico, clima (lluvia y temperatura) y de los materiales o alguna otra consideración técnica; dicho rango de especificaciones puede llevarse a límites más estrictos (menor contenido de vacíos) en cuanto al contenido de vacíos de la mezcla asfáltica.
- 5. Asignar a un funcionario del CONAVI como contrapartida para lograr que en algunos proyectos, con un buen control del proceso de producción, transporte, colocación y compactación de la mezcla asfáltica, se puedan monitorear y sirvan de base para revisar y "ajustar" si fuese del caso, las especificaciones técnicas para el porcentaje de vacíos de la capa asfáltica compactada.

7. BIBLIOGRAFÍA

- Ministerio de Obras Públicas y Transportes, Especificaciones generales para la construcción de caminos, carreteras y puentes, CR-77, Costa Rica, 1978.
- Ministerio de Obras Públicas y Transportes, Consejo Nacional de Vialidad, Requisitos para mezclas asfálticas en caliente, MN-001-99, Costa Rica, 1999.
- Ministerio de Obras Públicas y Transportes, Consejo Nacional de Vialidad, Disposición general AM-01-2000, actualización del CR-77, Costa Rica, 2000.
- American Society for Testing and Materials, ASTM D 2726-00. Standard Practice for Bulk Specific Gravity and Density of Non-Absorptive Compacted Bituminous Mixtures. American Society for Testing and Materials (ASTM). 2003 Annual book of ASTM standards, ASTM, EUA, 2003.
- American Society for Testing and Materials, ASTM D 1188-96 (Reapproved 2002). Standard Practice for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples. American Society for Testing and Materials (ASTM). 2003 Annual book of ASTM standards, ASTM, EUA, 2003.
- Laboratorio Nacional de Materiales y Modelos Estructurales, Procedimiento para la determinación de la gravedad específica bruta para pastillas Marshall IT-MB-01, LANAMME, Costa Rica, 2003.
- Laboratorio Nacional de Materiales y Modelos Estructurales, Procedimiento para la determinación de la gravedad específica máxima teórica para mezclas asfálticas IT-MB-02, LANAMME, Costa Rica, 2003.
- Willoughby, Kim y otros; Construction-related asphalt concrete pavement temperature differentials and the corresponding density differentials; Washington DOT; 2001.
- Instituto del Asfalto; Principios de Construcción de Pavimentos de Mezcla Asfáltica en Caliente, serie de manuals Nº22 (MS-22),USA, 1992.

ANEXO I

RESUMEN: RESULTADOS DE LABORATORIOS

JULIO 2004

Tabla A1: Resumen de resultados de laboratorio

			S	aturado Sup	erficie Seca	9	Parafina	
	Espesor	Espesor	Núcl	eos	Bloc	ues	Núcleos	Bloques
Punto de estudio	de capa nueva (cm)	promedio de corte (cm)	% Absorción de agua promedio	% Vacíos Promedio	% Absorción de agua promedio	% Vacíos Promedio	% Vacíos Promedio	% Vacíos Promedio
1	6.0	6.0 / 6.0	4.1	10.6	3.6	10.7	11.8	12.7
2	6.0	6.0 / 6.0	2.4	7.5	1.8	6.3	7.9	7.3
3	6.5	6.0 / 6.0	0.9	4.4	1.0	4.7	7.4	5.3
4	6.0	6.0 / 6.0	0.9	4.5	1.1	5.4	7.0	7.9
5	6.0	5.5 / 6.0	0.8	4.4	1.1	4.2	5.8	6.7
6	7.0	6.0 / 6.0	1.2	6.4	1.4	7.0	7.2	9.1
7	7.0	4.5 / 4.5	1.1	6.4	2.8	7.7	10.4	10.3
8	5.0	4.0 / 4.0	5.0	11.6	5.8	10.9	14.7	14.9
9	7.0	5.0 / 5.0	4.5	11.6	4.9	11.5	14.0	14.2
10	6.0	5.5 / 4.3	1.8	7.5	19	5.7	9.6	9.4
11	9.0	5.5 / 4.2	1.3	6.1	2.5	10.1	7.6	11.3
12	6.0	4.4/4.4	6.6	12.7	6.8	10.3	12.1	14.7
13	6.0	4.7 / 4.3	4.6	10.4	4.6	10.9	11.5	14.9
14	9.0	4.6 / 4.7	5.1	12.0	6.6	12.5	15.7	16.0
15	6.0	4.7 / 4.6	0.9	4.3	0.8	4.3	5.7	7.7
16	6.0	4.7 / 4.6	1.4	5.8	1.5	6.9	7.4	7.1
17	5.5	4.6 / 4.3	2.8	7.5	2.5	7.8	9.9	9.9
18	6.0	4.7/4.5	3.7	9.7	3.3	9.2	11.9	11.9
19	4.5	4.5 / 4.0	0.7	4.7	11.6	7.9	7.7	12.4
20	5.0	5.5 / 5.5	3.4	9.8	2.8	9.3	12.9	13.3
21	4.5	4.5 / 4.5	3.7	8.6	4.3	9.1	10.4	12.9
22	4.0	4.0 / 3.8	3.3	8.8	4.7	11.2	12.5	16.3
23	4.0	4.5 / 4.5	4.0	9.9	3.3	9.8	12.3	14.2
24	3.5	3.5 / 3.5	2.8	4.4	2.6	4.2	8.6	6.8
25	3.0	3.0 / 3.5	5.3	11.9	3.5	11.0	16.7	14.6
26	4.0	4.0 / 4.2	3.8	7.6	5.4	8.2	9.7	13.1
27	4.0	4.0 / 4.2	3.1	11.8	11.2	11.2	15.3	13.2
28	3.5	3.0 / 3.7	2.2	5.4	3.0	5.2	10.1	9.3
29	6.0	5.0 / 7.8	3.9	7.4	3.8	4.3	6.2	6.6
30	4.0	3.3 / 3.8	2.8	6.1	3.0	5.5	8.9	8.3
31	3.5	3.6 / 3.6	4.7	11.0	3.8	9.6	12.7	16.4
32	4.0	3.5 / 3.8	4.2	10.6	3.0	9.9	12.0	14.1
33	4.0	4.0 / 3.9	6.6	12.5	5.4	11.2	13.3	14.4

Tabla A1: Resumen de resultados de laboratorio (continuación)

			Saturado Superficie Seca			Para	afina	
	Espesor	Espesor	Núcl	eos	Bloc	ques	Núcleos	Bloques
Punto de estudio	de capa nueva (cm)	promedio de corte (cm)	% Absorción de agua promedio	% Vacíos Promedio	% Absorción de agua promedio	% Vacíos Promedio	% Vacíos Promedio	% Vacíos Promedio
34	4.0	4.8 / 4.5	3.3	7.8	3.4	10.8	8.2	14.9
35	4.5	5.0 / 4.8	2.3	3.0	1.3	2.6	4.4	3.8
36	4.0	4.5 / 4.5	4.3	9.3	5.0	8.7	11.9	12.6
37	3.0	3.2 / 3.0	8.1	13.3	7.2	13.2	20.3	21.7
38	3.5	3.5 / 4.0	5.5	12.8	4.8	8.7	13.9	13.8
39	3.0	3.2 / 3.2	3.4	8.5	4.9	6.6	11.7	10.0
40	3.5	3.2 / 3.5	2.7	10.2	2.1	7.3	11.3	10.5
41	4.5	4.0 / 5.0	3.7	9.4	3.0	7.7	10.6	11.0

Anexo I

ANEXO II

COMPARACION DE METODOS DE ENSAYO

JULIO 2004

Método: Saturado Superficie Seca (ASTM D 2726-00)

	Tramo 1:	Barrio Escalante	
Número de especimen	% vacíos	% absorción de agua	altura de corte (mm)
1	10.0	5.6	35.79
2	10.2	6.0	36.63
3	8.0	4.5	36.41
4	8.5	5.5	35.54
5	8.2	5.2	37.21
6	8.1	5.1	36.70
7	7.6	4.1	36.67
Promedio	8.7	5.1	36.4
20	Tramo 2: Sa	n Isidro de Heredia	
Número de especimen	% vacíos	% absorción de agua	altura de corte (mm)
8	4.3	2.8	35.37
9	3.5	22.7	37.60
10	3.7	2.6	35.28
11	3.5	2.9	35.67
12	3.6	2.8	34.75
13	4.3	2.6	35.82
14	4.5	2.9	35.58
Promedio	3.9	2.7	35.7
	Tramo 3:	Moravia - Ruta 32	
Número de especimen	% vacios	% absorción de agua	altura de corte (mm)
15	5.4	3.0	40.29
16	7.0	3.5	39.82
17	5.0	2.9	40.01
18	5.4	2.8	39.76
19	5.2	2.8	40.29
20	4.8	3.8	39.93
21	5.6	2.9	39.59
Promedio	5.5	3.1	40.0

Método: Recubrir los especímenes con parafilm (ASTM D 1188-96 Reapproved 2002)

Tram	no 1: Barrio Escal	ante
Número de especímen	% vacíos	altura de corte (mm)
22	10.8	35.73
23	11.4	35.11
24	13.0	35.51
25	11.1	36.58
26	12.0	36.24
27	10.6	36.41
28	11.1	36.79
Promedio	11.4	36.1
Tramo	2: San Isidro de H	leredia
Número de especimen	% vacíos	altura de corte (mm)
29	5.5	35.08
30	6.2	36.05
31	4.9	35.47
32	5.1	36.55
33	4.7	35.90
34	5.0	35.52
35	5.7	35.96
Promedio	5.3	35.8
Tram	o 3: Moravia - Ru	ta 32
Número de especimen	% vacíos	altura de corte (mm)
36	9.9	40.04
37	8.2	40.17
38	10.1	39.99
39	9.00	40.33
40	10.9	
41	8.1	39.98
42	6.3	39.81
Promedio	8.9	40.1

Método: Sumergir los especímenes en parafina (AASHTO T 275-91 2000)

	no 1: Barrio Escal	
Número de especímen		altura de corte (mm)
43	8.5	36.87
44	8.3	36.49
45	9.0	35.80
46	8.7	35.75
47	7.8	35.44
48	7.6	35.26
49	5.5	35.16
Promedio	7.9	35.8
Tramo	2: San Isidro de H	leredia
Número de especimen	% vacios	altura de corte (mm)
50	2.7	36.40
51	2.9	35.21
52	3.1	35.94
53	3.4	35.87
54	2.9	34.78
55	2.7	35.67
56	2.7	35.72
Promedio	2.9	35.7
Tram	o 3: Moravia - Ru	ta 32
Número de especimen	% vacíos	altura de corte (mm)
57	5.3	39.77
58	4.9	40.14
59	5.7	40.00
60	7.0	40.10
61	5.8	40.04
62	5.7	40.01
63	7.0	39.70
Promedio	5.9	40.0