MUNICIPALIDAD DE SAN JOSE

PROYECTO DE REHABILITACION DE VIAS URBANAS

INFORME DE AVANCE Nº 3

DISTRITO SAN FRANCISCO DE DOS RIOS

UNIVERSIDAD DE COSTA RICA
ESCUELA DE INGENIERIA CIVIL
LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

ABRIL 1998

PROYECTO DE REHABILITACION DE VIAS URBANAS

INFORME DE AVANCE Nº 3

DISTRITO SAN FRANCISCO DE DOS RIOS

Indice de Contenido	ágina
1- Objetivo y alcance	1
2- Estudios de tránsito y predicción de cargas por eje	1
3- Análisis deflectométrico	2
4- Estudio de laboratorio	2
5- Análisis estructural del pavimento	3
5.1 Análisis de la capacidad estructural	3
5.2 Diseño propuesto	10
6- Cuadro de cantidades	17
7- Conclusiones y recomendaciones	20
8- Especificaciones especiales	23
Anexo 1 : Estimación de cargas por eje en las estaciones de conteo	26
Anexo 2 : Ensayos de laboratorio y secciones típicas del pavimento existente	33
Anexo 3 : Perfil de deflexiones	70
Anexo 4 : Plano de ubicación de rutas	77

PROYECTO DE REHABILITACION DE VIAS URBANAS

INFORME DE AVANCE Nº 3

DISTRITO SAN FRANCISCO DE DOS RIOS

1. OBJETIVO Y ALCANCE

Realizar un estudio de las condiciones actuales de los pavimentos, para readecuarlos estructuralmente a las condiciones futuras del tránsito.

Este informe se circunscribe a 3 rutas del distrito San Francisco de Dos Ríos, ubicadas según se detalla en el Anexo 4 (planos de ubicación de rutas), y se identifican de la siguiente forma:

- D1: De la iglesia de San Francisco de Dos Ríos hacia el sur, hasta 100 m al este de la farmacia La Pacífica.
- D2: De la farmacia La Pacífica hacia el este, hasta la intersección con calle transversal.
- D3 : De la panadería Musmanni hacia el oeste, hasta la intersección con la carretera a Desamparados

2. ESTUDIOS DE TRANSITO Y PREDICCION DE CARGAS POR EJE

Con base en los conteos de tránsito y composición vehicular, suministrados por la Municipalidad de San José, se hicieron las proyecciones de flujo vehicular hasta el año 2010.

De acuerdo con esta información se determinó la cantidad de solicitaciones de carga, en términos de ejes equivalentes de 8200 kg, estimados estos a partir de dos escenarios probables de carga (bajo y alto) para el período de diseño antes indicado. En el Anexo 1 se muestran las tablas resumen de este análisis para cada una de las estaciones de conteo, y a continuación se presentan los rangos probables de solicitaciones de carga, estimados para cada una de las vías contempladas en el presente estudio.

Tabla 2.1 Rango probable de ejes equivalentes.

RUTA	EJES EQUIVALENTES * 10 ⁶ (8.2 ton) (rango probable)
D1	0.36 - 0.54
D2	1.00 – 1.45
D3	2.00 - 2.82

3. ANALISIS DEFLECTOMETRICO

Se realizó un estudio de deflexiones por medio de la viga Benkelman, con una carga de 8200 kg en el eje trasero y una presión de inflado de 5.6 kg/cm².

En el Anexo 3 se presenta el perfil de deflexiones, en cada una de las rutas, así como su dispersión estadística.

En general los valores de deflexión obtenidos son altos, lo que denota insuficiencia estructural del pavimento. Específicamente en las tres rutas, se obtuvieron los siguientes valores de deflexión en verano:

DEFLEX. MEDIA (mm*10 ⁻²)	Drr (mm*10 ⁻²)(*)
93.2	153.43
79.9	115.88
97.3	157.82
	93.2 79.9

(*) Drr: deflexión de rebote (deflexión media más 2 desviaciones estandar).

4. ESTUDIO DE LABORATORIO

Como parte del diagnóstico, se hizo un estudio de laboratorio con base en sondeos a cielo abierto y se realizaron análisis del perfil del pavimento y de valoración visual de los materiales constitutivos, así como de sus características fisicomecánicas. En general se evaluaron los siguientes aspectos:

- Espesor de capas.
- Evaluación visual de los materiales constitutivos.
- Apreciación visual de la condición de las capas en el sitio de sondeo.
- Capacidad de soporte de la sub-rasante en sitio.
- Densidad de compactación en sitio.
- Capacidad de soporte en laboratorio de materiales de sub-rasante, sub-base y base.
- Granulometría, plasticidad y clasificación de materiales (sub-rasante, sub-base y base).

En el Anexo 2 se presenta el detalle de los resultados de los ensayos de laboratorio y el perfil de la estructura del pavimento en cada uno de los sondeos realizados.

Cabe destacar que coincidentemente con el perfil de deflexiones, en la capas granulares se detectaron materiales de mala calidad, fuera de especificación y con gran variabilidad de espesores. Especialmente llama la atención en algunos casos la presencia de arcillas de alta plasticidad como por ejemplo en el sondeo X11. En general predominan los suelos arcillosos a nivel de sub-rasante. La mala calidad de las capas granulares existentes y la presencia de arcillas de alta plasticidad son factores que generan incertidumbre cuando se plantea la opción de rehabilitar solamente las capas superiores.

5. ANALISIS ESTRUCTURAL DEL PAVIMENTO

5.1 Análisis de la capacidad estructural

Con base en la información de campo y de laboratorio, se definieron las secciones típicas (probables) de cada una de las vías, y las características fundamentales de los materiales constitutivos.

Se diseñó la reconstrucción de los pavimentos, aplicando en primera instancia el modelo AASHTO, para lo cual se definieron para cada una de las rutas los siguientes parámetros :

- Rango probable de ejes equivalentes.
- Capacidad de soporte de la sub-rasante.
- Desviación estándar global.
- Pérdida en el índice de servicio (psi).
- Valor del índice de servicio al final del período de diseño del pavimento.

Con base en dichos parámetros se determinó la capacidad estructural requerida en cada una de las rutas, en términos del número estructural SN (AASHTO).

En la Tablas 5.1a 5.3 se resumen los resultados de este análisis.

Puede notarse en estas tablas que se evalúa el valor SN para diferentes valores de módulo de la sub-rasante, lo cual obedece a diferentes tipos de suelos detectados y también a diferentes opciones de rehabilitación.

Posteriormente se hizo un análisis de esfuerzos y deformaciones, por medio de un modelo multicapa elástico, con el propósito de determinar la capacidad a fatiga del pavimento, por deformaciones unitarias de tensión en la capa asfáltica y por deformaciones verticales, tipo rodera, en la sub-rasante. En todos los casos se obtuvo que la capacidad estructural a fatiga del pavimento, supera el número de repeticiones de carga previstos para el período de diseño.

En las Tablas 5.4 a 5.9 se resumen los resultados de este análisis para las diferentes alternativas de rehabilitación:

Tabla 5.1 : Cálculo del número estructural SN (AASHTO)

PAVIMENTO FLEXIBLE

ZONA: SAN FRANCISCO DE DOS RIOS

RUTA: D1

W ₁₈	LOG ₁₀ (W ₁₈)	Z _R	So	SN	SN+1	Δ PSI	M _R	Error	LOG ₁₀ (W ₁₈)
6.00E+05	5.7781513	-1.65	0.35	3.786797	4.7868	2.3	4000	7.16E-05	5.77822281
6.00E+05	5.7781513	-1.29	0.35	3.632266	4.63227	2.3	4000	5.55E-05	5.77820672
6.00E+05	5.7781513	-0.84	0.35	3.446073	4.44607	2.3	4000	3.74E-05	5.77818869
1.00E+06	6.0000000	-1.65	0.35	4.070642	5.07064	2.3	4000	-0.000182	5.99981816
1.00E+06	6.0000000	-1.29	0.35	3.907339	4.90734	2.3	4000	-0.000189	5.99981141
1.00E+06	6.0000000	-0.84	0.35	3.710243	4.71024	2.3	4000	-0.000198	5.99980177
6.00E+05	5.7781513	-1.65	0.35	3.403011	4.40301	2.3	5500	1.45E-05	5.77816579
6.00E+05	5.7781513	-1.29	0.35	3.261047	4.26105	2.3	5500	1.74E-05	5.77816864
6.00E+05	5.7781513	-0.84	0.35	3.090368	4.09037	2.3	5500	2.1E-05	5.77817227
1.00E+06	6.0000000	-1.65	0.35	3.665464	4.66546	2.3	5500	0.000486	6.00048591
1.00E+06	6.0000000	-1.29	0.35	3.51495	4.51495	2.3	5500	0.000585	6.00058497
1.00E+06	6.0000000	-0.84	0.35	3.333745	4.33375	2.3	5500	0.000729	6.00072946
6.00E+05	5.7781513	-1.65	0.35	3.214502	4.2145	2.3	6500	6.26E-05	5.77821388
6.00E+05	5.7781513	-1.29	0.35	3.07897	4.07897	2.3	6500	7.01E-05	5.77822132
6.00E+05	5.7781513	-0.84	0.35	2.916157	3.91616	2.3	6500	7.87E-05	5.77822996
1.00E+06	6.0000000	-1.65	0.35	3.465027	4.46503	2.3	6500	0.000207	6.0002069
1.00E+06	6.0000000	-1.29	0.35	3.321004	4.321	2.3	6500	0.000228	6.00022763
1.00E+06	6.0000000	-0.84	0.35	3.147794	4.14779	2.3	6500	0.000254	6.00025362

W₁₈ : rango de ejes equivalentes Z_R : confiabilidad (80, 90 y 95%)

S_o: desviación estándar global

SN : número estructural PSI : índice de servicio

M_R : módulo resilente de la sub-rasante

Tabla 5.2 : Cálculo del número estructural SN (AASHTO)

PAVIMENTO FLEXIBLE

ZONA: SAN FRANCISCO DE DOS RIOS

RUTA: D2

W ₁₈	LOG ₁₀ (W ₁₈)	Z _R	So	SN	SN+1	ΔPSI	M _R	Error	LOG ₁₀ (W ₁₈)
1.00E+06	6.0000000	-1.65	0.35	3.379203	4.3792	2.3	7000	0.00032	6.00031971
1.00E+06	6.0000000	-1.29	0.35	3.237902	4.2379	2.3	7000	0.000196	6.00019613
1.00E+06	6.0000000	-0.84	0.35	3.067005	4.067	2.3	7000	-0.000949	5.9990508
1.45E+06	6.1613680	-1.65	0.35	3.566766	4.56677	2.3	7000	1.41E-05	6.16138209
1.45E+06	6.1613680	-1.29	0.35	3.419355	4.41935	2.3	7000	1.71E-05	6.16138506
1.45E+06	6.1613680	-0.84	0.35	3.241971	4.24197	2.3	7000	2.1E-05	6.16138905
1.00E+06	6.0000000	-1.65	0.35	3.228345	4.22835	2.3	8000	4.77E-05	6.0000477
1.00E+06	6.0000000	-1.29	0.35	3.09233	4.09233	2.3	8000	4.97E-05	6.00004969
1.00E+06	6.0000000	-0.84	0.35	2.92893	3.92893	2.3	8000	5.16E-05	6.0000516
1.45E+06	6.1613680	-1.65	0.35	3.409678	4.40968	2.3	8000	0.000138	6.16150576
1.45E+06	6.1613680	-1.29	0.35	3.267494	4.26749	2.3	8000	0.000145	6.16151324
1.45E+06	6.1613680	-0.84	0.35	3.096545	4.09655	2.3	8000	0.000154	6.16152163
1.00E+06	6.0000000	-1.65	0.35	3.100069	4.10007	2.3	9000	1.24E-05	6.00001238
1.00E+06	6.0000000	-1.29	0.35	2.968498	3.9685	2.3	9000	1.28E-05	6.00001278
1.00E+06	6.0000000	-0.84	0.35	2.810502	3.8105	2.3	9000	1.31E-05	6.00001314
1.45E+06	6.1613680	-1.65	0.35	3.275534	4.27553	2.3	9000	5.95E-05	6.16142753
1.45E+06	6.1613680	-1.29	0.35	3.137899	4.1379	2.3	9000	6.22E-05	6.16143022
1.45E+06	6.1613680	-0.84	0.35	2.972522	3.97252	2.3	9000	6.49E-05	6.16143292

W₁₈ : rango de ejes equivalentes Z_R : confiabilidad (80, 90 y 95%) S_o : desviación estándar global

SN : número estructural PSI : índice de servicio

M_R: módulo resilente de la sub-rasante

Tabla 5.3 : Cálculo del número estructural SN (AASHTO)

PAVIMENTO FLEXIBLE

ZONA: SAN FRANCISCO DE DOS RIOS

RUTA: D3

W ₁₈	LOG ₁₀ (W ₁₈)	Z _R	So	SN	SN+1	ΔPSI	M _R	Error	LOG ₁₀ (W ₁₈)
2.00E+06	6.3010300	-1.65	0.35	3.931224	4.93122	2.3	6000	-1.22E-05	6.30101784
2.00E+06	6.3010300	-1.29	0.35	3.772193	4.77219	2.3	6000	-1.29E-05	6.30101709
2.00E+06	6.3010300	-0.84	0.35	3.580407	4.58041	2.3	6000	-1.39E-05	6.30101612
2.60E+06	6.4149733	-1.65	0.35	4.07939	5.07939	2.3	6000	1.92E-05	6.41499259
2.60E+06	6.4149733	-1.29	0.35	3.915831	4.91583	2.3	6000	1.95E-05	6.41499283
2.60E+06	6.4149733	-0.84	0.35	3.718419	4.71842	2.3	6000	1.98E-05	6.41499319
2.00E+06	6.3010300	-1.65	0.35	3.735578	4.73558	2.3	7000	-0.00028	6.30075028
2.00E+06	6.3010300	-1.29	0.35	3.582679	4.58268	2.3	7000	-0.000294	6.30073618
2.00E+06	6.3010300	-0.84	0.35	3.398508	4.39851	2.3	7000	-0.00031	6.30072022
2.60E+06	6.4149733	-1.65	0.35	3.878403	4.8784	2.3	7000	-5.26E-05	6.41492078
2.60E+06	6.4149733	-1.29	0.35	3.72101	4.72101	2.3	7000	-5.55E-05	6.41491787
2.60E+06	6.4149733	-0.84	0.35	3.531258	4.53126	2.3	7000	-5.91E-05	6.41491426
2.00E+06	6.3010300	-1.65	0.35	3.43357	4.43357	2.3	9000	-9.42E-05	6.30093577
2.00E+06	6.3010300	-1.29	0.35	3.290571	4.29057	2.3	9000	-9.8E-05	6.30093196
2.00E+06	6.3010300	-0.84	0.35	3.118624	4.11862	2.3	9000	-0.000102	6.30092824
2.60E+06	6.4149733	-1.65	0.35	3.566442	4.56644	2.3	9000	-0.000648	6.41432495
2.60E+06	6.4149733	-1.29	0.35	3.419018	4.41902	2.3	9000	-0.000666	6.4143072
2.60E+06	6.4149733	-0.84	0.35	3.241622	4.24162	2.3	9000	-0.000685	6.41428803

W₁₈ ; rango de ejes equivalentes

Z_R : confiabilidad (80, 90 y 95%)

S_o : desviación estándar global

SN : número estructural PSI : índice de servicio

M_R: módulo resilente de la sub-rasante

Ruta: D1 (Alternativa 1)

Ruta: D1 (Alternativa 2)

TABLA 5.4: Análisis de fatiga.

RUTA	E ₁	E ₂	U _{z : Z=0}	U _{z : Z=0}	e _{t = (3.94)}	e _{c = (16.145)}	NF ₁	ND
	(kg/cm²)	(kg/cm²)	(pulg)	(mm*10 ⁻²)				
D1	14085	21127	0.0364	92.456	3.05E-05	5.05E-04	1.66E+10	7.84E+05
D1	14085	28169	0.0351	89.154	4.58E-05	4.49E-04	4.34E+09	1.33E+06
D1	21127	21127	0.0347	88.138	7.09E-06	4.60E-04	1.43E+12	1.19E+06
D1	21127	28169	0.0335	85.090	1.95E-05	4.08E-04	5.11E+10	2.04E+06

Módulo de la sub-rasante = 300 kg/cm2

TABLA 5.5 : Análisis de fatiga.

RUTA	E ₁	E ₂	U _{z : Z=0}	U _{z : Z=0}	e _{t = (4.92)}	e _{c = (14.375)}	NF ₁	ND
	(kg/cm²)	(kg/cm²)	(pulg)	(mm*10 ⁻²)				- 1 m . s
D1	14085	21127	0.0373	94.742	4.14E-06	7.03E-04	1.18E+13	1.78E+05
D1	14085	28169	0.0362	91.948	2.30E-05	6.36E-04	4.19E+10	2.79E+05
D1	21127	21127	0.0353	89.662	2.88E-05	6.29E-04	1.41E+10	2.93E+05
D1	21127	28169	0.0342	86.868	8.10E-06	5.68E-04	9.20E+11	4.63E+05

E₁: módulo resilente de la capa asfáltica (kg/cm²).

E2: módulo resilente de la base (kg/cm²).

Uz : desplazamiento vertical total del pavimento (mm*10⁻²).

e_{t (h)}: deformación unitaria de tensión, en la capa asfáltica a la profundidad (h).

 $e_{c\,(h)}$: deformación unitaria de compresión, en la sub-rasante a la profundidad (h).

NF₁: Número de repeticiones de carga admisibles en la capa asfáltica.

ND : Número de repeticiones de carga admisibles en la sub-rasante.

Módulo de la sub-rasante = 300 kg/cm2

Ruta: D2 (Alternativa 1)

Ruta: D2 (Alternativa 2)

TABLA 5.6 : Análisis de fatiga.

RUTA	E ₁	E ₂	U _{z : Z=0}	U _{z : Z=0}	e _{t = (2.95)}	e _{c = (14.765)}	NF ₁	ND
	(kg/cm²)	(kg/cm²)	(pulg)	(mm*10 ⁻²)				
D2	14085	21127	0.0246	62.484	5.95E-05	4.46E-04	1.84E+09	1.37E+06
D2	14085	28169	0.0235	59.690	6.94E-05	3.95E-04	1.11E+09	2.36E+06
D2	21127	21127	0.0235	59.690	2.83E-05	4.12E-04	1.50E+10	1.95E+06
D2	21127	28169	0.0224	56.896	4.29E-05	3.64E-04	3.81E+09	3.40E+06

Módulo de la sub-rasante = 563 kg/cm2

TABLA 5.7 : Análisis de fatiga.

RUTA	E ₁	E ₂	U _{z : Z=0}	U _{z : Z=0}	e _{t = (3.94)}	e _{c = (14.185)}	NF 1	ND
	(kg/cm²)	(kg/cm²)	(pulg)	(mm*10 ⁻²)				
D2	14085	21127	0.0241	61.214	2.15E-05	4.40E-04	5.23E+10	1.45E+06
D2	14085	28169	0.0231	58.674	3.77E-05	3.89E-04	8.24E+09	2.52E+06
D2	21127	21127	0.0227	57.658	1.07E-05	4.02E-04	3.68E+11	2.18E+06
D2	21127	28169	0.0217	55.118	1.31E-05	3.55E-04	1.89E+11	3.80E+06

E₁: módulo resilente de la capa asfáltica (kg/cm²).

E₂: módulo resilente de la base (kg/cm²).

Uz : desplazamiento vertical total del pavimento (mm*10⁻²).

e_{t (h)} : deformación unitaria de tensión, en la capa asfáltica a la profundidad (h).

e_{c (h)} : deformación unitaria de compresión, en la sub-rasante a la profundidad (h).

NF₁: Número de repeticiones de carga admisibles en la capa asfáltica.

ND : Número de repeticiones de carga admisibles en la sub-rasante.

Módulo de la sub-rasante = 563 kg/cm2

TABLA 5.8 : Análisis de fatiga.

Ruta: D3 (Alternativa 1)

RUTA	E ₁	E ₂	U _{z : Z=0}	U _{z : Z=0}	e _{t = (2.95)}	e _{c = (14.765)}	NF ₁	ND
	(kg/cm²)	(kg/cm²)	(pulg)	(mm*10 ⁻²)				
D2	14085	21127	0.0228	57.912	5.68E-05	4.20E-04	2.14E+09	1.79E+06
D2	14085	28169	0.0217	55.118	6.69E-05	3.72E-04	1.25E+09	3.08E+06
D2	21127	21127	0.0217	55.118	2.64E-05	3.88E-04	1.88E+10	2.55E+06
D2	21127	28169	0.0206	52.324	4.11E-05	3.43E-04	4.39E+09	4.43E+06

Módulo de la sub-rasante = 634 kg/cm2

TABLA 5.9 : Análisis de fatiga.

Ruta: D3 (Alternativa 2)

RUTA	E ₁	E ₂	U _{z : Z=0}	U _{z : Z=0}	e _{t = (3.94)}	e _{c = (14.185)}	NF ₁	ND
	(kg/cm²)	(kg/cm²)	(pulg)	(mm*10 ⁻²)				
D2	14085	21127	0.0223	56.642	1.96E-05	4.16E-04	7.10E+10	1.87E+06
D2	14085	28169	0.0213	54.102	3.58E-05	3.68E-04	9.77E+09	3.23E+06
D2	21127	21127	0.021	53.340	1.15E-05	3.81E-04	2.90E+11	2.77E+06
D2	21127	28169	0.02	50.800	1.18E-05	3.36E-04	2.67E+11	4.86E+06

E₁: módulo resilente de la capa asfáltica (kg/cm²).

E2: módulo resilente de la base (kg/cm2).

Uz : desplazamiento vertical total del pavimento (mm*10⁻²).

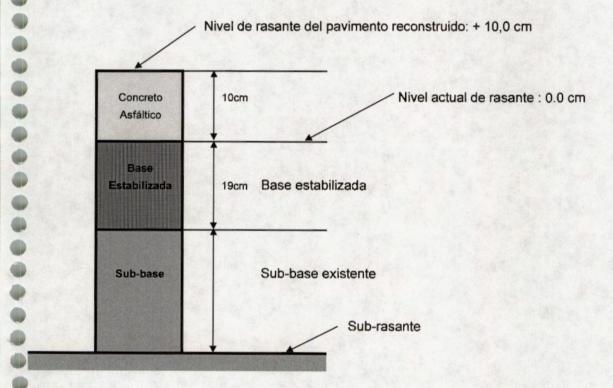
et (h): deformación unitaria de tensión, en la capa asfáltica a la profundidad (h).

e_{c (h)}: deformación unitaria de compresión, en la sub-rasante a la profundidad (h).

NF₁: Número de repeticiones de carga admisibles en la capa asfáltica.

ND : Número de repeticiones de carga admisibles en la sub-rasante.

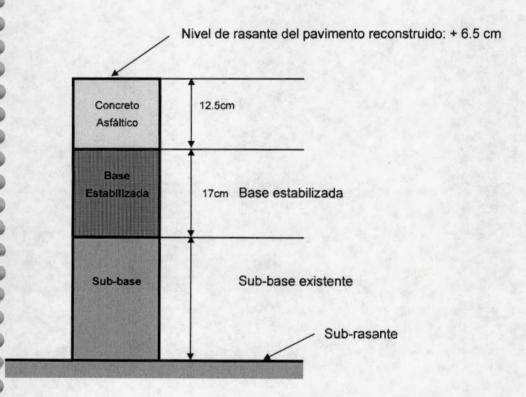
Módulo de la sub-rasante = 634 kg/cm2


5.2 DISEÑO PROPUESTO

En los croquis siguientes se detalla la solución estructural propuesta para cada una de la vías.

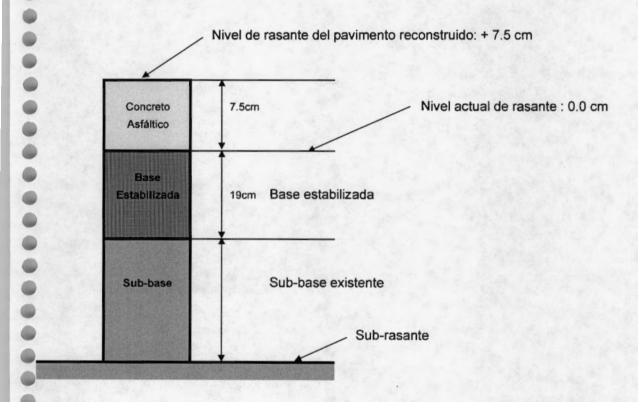
PERFIL TIPICO DEL PAVIMENTO

RUTA D1 : De la iglesia de San Francisco de Dos Ríos hacia el sur, hasta 100 m este de la farmacia La Pacífica


ALTERNATIVA 1

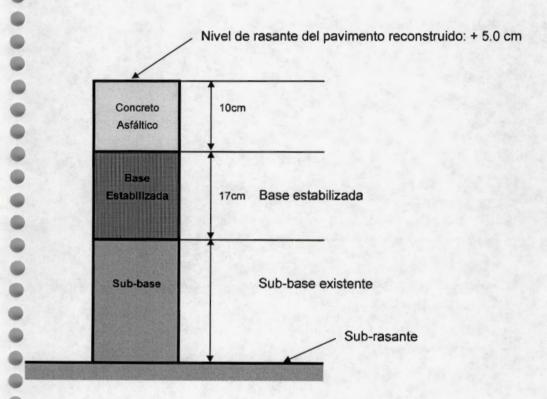
- Escarificar y estabilizar los primeros 19.0 cm del pavimento existente.
- Colocar una capa asfáltica de 10.0 cm
- El nivel de rasante sube 10.0 cm.

RUTA D1 : De la iglesia de San Francisco de Dos Ríos hacia el sur, hasta 100 m este de la farmacia La Pacífica


ALTERNATIVA 2

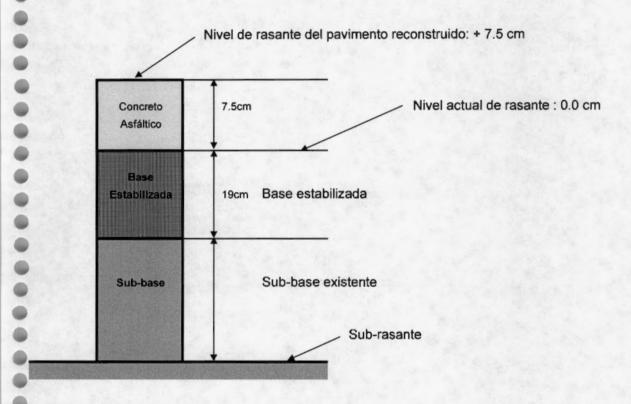
- Remover los primeros 6.0 cm del pavimento existente
- Escarificar y estabilizar 17.0 cm del pavimento.
- Colocar una capa asfáltica de 12.5 cm.
- El nivel de rasante sube 6.5 cm.

RUTA D2 : De la farmacia La Pacífica hacia el este, hasta la intersección con la calle transversal


ALTERNATIVA 1

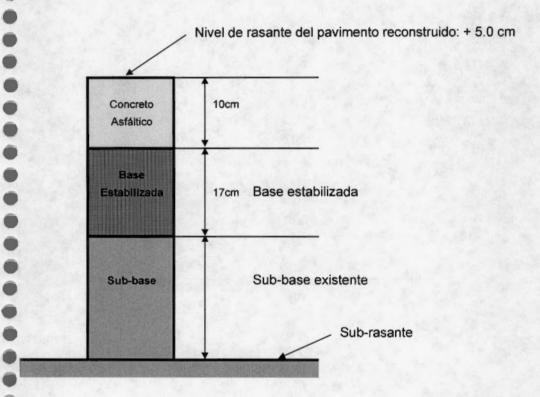
- Escarificar y estabilizar los primeros 19.0 cm del pavimento existente.
- Colocar una capa asfáltica de 7.5 cm
- El nivel de rasante sube 7.5 cm.

RUTA D2 : De la farmacia La Pacífica hacia el este, hasta la intersección con la calle transversal

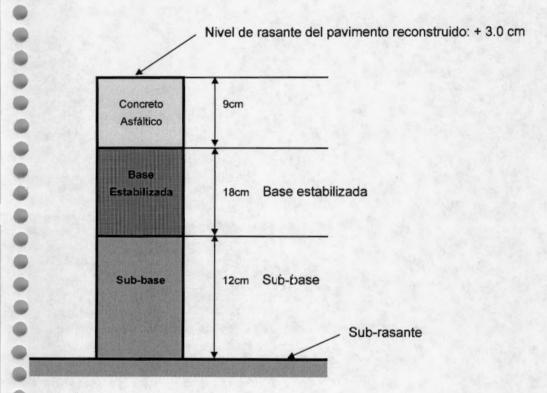

ALTERNATIVA 2

- Remover los primeros 5.0 cm del pavimento existente
- Escarificar y estabilizar 17.0 cm del pavimento.
- Colocar una capa asfáltica de 10.0 cm.
- El nivel de rasante sube 5.0 cm.

RUTA D3 , TRAMO A : De la panadería Musmanni hacia el oeste, hasta el parque de Residencial El Bosque


ALTERNATIVA 1

- Escarificar y estabilizar los primeros 19.0 cm del pavimento existente.
- Colocar una capa asfáltica de 7.5 cm
- El nivel de rasante sube 7.5 cm.


RUTA D3 , TRAMO A : De la panadería Musmanni hacia el oeste, hasta el parque de Residencial El Bosque

ALTERNATIVA 2

- Remover los primeros 5.0 cm del pavimento existente
- Escarificar y estabilizar 17.0 cm del pavimento.
- Colocar una capa asfáltica de 10.0 cm.
- El nivel de rasante sube 5.0 cm.

RUTA D3 , TRAMO B : Del parque de Residencial El Bosque hasta la intersección con la carretera a Desamparados

- Excavar 36.0 cm
- Conformar la rasante
- Colocar 12.0 cm de sub-base
- Construir una base estabilizada de 18.0 cm
- Colocar una capa asfáltica de 9.0 cm
- El nivel de rasante sube 3.0 cm

6. CUADRO DE CANTIDADES

Se presenta a continuación los datos relativos a la sección típica y cantidades estimadas de obra a ejecutar, en cada una de las rutas. Asimismo, al final de este cuadro se presentan las secciones típicas transversales del los diferentes tramos de cada uno de las vías analizadas.

RUTA: D1	ALTERNATIVA 1	area (m²)	espesor (m)	cantidad (m ³)
Escarificación y	5766	0.19	1096	
Colocación y cor	nformación de capa asfáltica	5766	0.1	577

RUTA: D1	ALTERNATIVA 2	area (m²)	espesor (m)	cantidad (m³)
Remoción de pavimento existente		5766	0.06	346
	estabilización del pavimento	5766	0.17	980
	nformación de capa asfáltica	5766	0.125	721

RUTA: D2	ALTERNATIVA 1	area (m²)	espesor (m)	cantidad (m³)
Escarificación y	estabilización del pavimento existente	7150	0.19	1359
Colocación y cor	7150	0.075	536	

RUTA: D2 ALTERNATIVA 2	area (m²)	espesor (m)	cantidad (m³)
Remoción de pavimento existente	7150	0.05	358
Escarificación y estabilización del pavimento	7150	0.17	1216
Colocación y conformación de capa asfáltica	7150	0.1	715

TRAMO A

RUTA: D3 ALTERNATIVA 1	area (m²)	espesor (m)	cantidad (m³)
Escarificación y estabilización del pavimento existente	5750	0.19	1093
Colocación y conformación de capa asfáltica	5750	0.075	431

RUTA: D3	ALTERNATIVA 2	area (m²)	espesor (m)	cantidad (m³)
Remoción de pa	vimento existente	5750	0.05	288
Escarificación y	estabilización del pavimento	5750	0.17	978
Colocación y cor	nformación de capa asfáltica	5750	0.1	575

TRAMO B

RUTA: D3	area (m²)	espesor (m)	cantidad (m³)
Excavación	4703	0.36	1693
Colocación de sub-base	4703	0.12	564
Construcción de base estabilizada	4703	0.18	847
Colocación y conformación de capa asfáltica	4703	0.09	423

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES **SECCION TIPICA**

PROYECTO: MUNICIPALIDA DE SAN JOSE

ZONA : SAN F. DOS RIOS RUTA : D1

FECHA: 25-4-97

ANCHO CALZADA (m)	LARGO (m)	AREA (m²)	ESTACION	CARACTERISTICAS	OBSERVACIONES
			0	Cordón ambos lados de la vía	
9.5	300	2850		Cordón ambos lados de la vía	
			300	Cordón ambos lados de la vía	
8.1	360	2916		Cordón ambos lados de la vía	
			660	Cordón ambos lados de la vía	
TOTALES	660	5766		18 18 18 18 18 18 18 18 18 18 18 18 18 1	

ZONA : SAN F. DOS RIOS

RUTA: D2

FECHA: 25-4-97

ANCHO CALZADA	LARGO	AREA	ESTACION	CARACTERISTICAS	OBSERVACIONES
(m)	(m)	(m ²)		· · · · · · · · · · · · · · · · · · ·	
			0	Cordón ambos lados de la vía	
7.9	200	1580		Cordón ambos lados de la vía	
	10 Sept 30		200	Cordón ambos lados de la vía	
8	200	1600		Cordón ambos lados de la vía	
			400	Cordón ambos lados de la vía	
8	200	1600		Cordón ambos lados de la vía	
			600	Cordón ambos lados de la vía	
7.9	300	2370		Cordón ambos lados de la vía	
			900	Cordón ambos lados de la vía	
TOTALES	900	7150			

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES SECCION TIPICA

PROYECTO: MUNICIPALIDA DE SAN JOSE

ZONA : SAN F. DOS RIOS

RUTA: D3

FECHA: 25-4-97

ANCHO CALZADA	LARGO		ESTACION	CARACTERISTICAS	OBSERVACIONES
(m)	(m)	(m ²)			
			0	Cordón ambos lados de la vía	
8	250	2000		Cordón ambos lados de la vía	
			250	Cordón ambos lados de la vía	
7.9	150	1185		Cordón ambos lados de la vía	
			400	Cordón ambos lados de la vía	
7.9	50	395		Cordón ambos lados de la vía	
			450	Cordón ambos lados de la vía	
8.1	100	810		Cordón ambos lados de la vía	
			550	Cordón ambos lados de la vía	
8.1	350	2835		Cordón ambos lados de la vía	
			900	Cordón ambos lados de la vía	
8.05	250	2013		Cordón ambos lados de la vía	
		Ar South	1150	Cordón ambos lados de la vía	
8.1	150	1215		Cordón ambos lados de la vía	
			1300	Cordón ambos lados de la vía	
TOTALES	1300	10453			

7. CONCLUSIONES Y RECOMENDACIONES

- 1. El ensayo de deflectometría muestra que, aún en las condiciones más favorables (final de la época de verano), el pavimento en la ruta D3, en el (ramo B (despúes del parque) muestra un déficit importante de capacidad estructural. En general las restantes rutas presentan una condición aceptable en el ensayo deflectométrico.
- 2. Los estudios de laboratorio muestran que en muchos de los sondeos realizados, los materiales constitutivos del pavimento son deficientes en conformación, espesores o calidad de los mismos. Tal es el caso, por ejemplo, de los materiales que en algunos casos se detectaron a nivel de subrasante, sub-base y base (materiales de mala graduación, capas granulares contaminadas con arcilla, arcillas de alta plasticidad, inexistencia de algunas de las capas, (sondeo H21), etc).
- 3. Los problemas más típicos que se detectaron a nivel de la sub-rasante en algunos sondeos fueron : falta de compactación, presencia de suelos orgánicos que debieron sustituirse por otros de mejor calidad y arcillas de plasticidad media-alta.
- 4. Del análisis de fatiga se concluye que la sub-rasante, desde el punto de vista de falla por fatiga, es susceptible a la variación de módulos en la capa de base. Por tanto deben cumplirse estrictamente las especificaciones respecto a la calidad de la base.
- 5. A nivel de sub-base se detectaron, en algunos de los sondeos, situaciones como las siguientes:
- Mucha variación en espesores.
- Materiales con graduación inadecuada, sobre todo por sobre-tamaño.
- Contaminación por finos arcillosos.
- Falta de compactación.

- 6. A nivel de base se encontró :
- Predominan las bases estabilizadas agrietadas.
- Capas de poco espesor.
- En algunos casos se construyeron bases de lastre (sondeo H21).
- Insuficiencia de capacidad estructural y, en algunos casos, falla severa por fatiga en la base estabilizada.

7. Capa asfáltica:

En general se trata de una capa de concreto asfáltico de escaso espesor. El pavimento asfáltico muestra condiciones avanzadas de oxidación, desprendimientos y agrietamiento severo, con algunas deficiencias de conformación y de drenaje superficial. El nivel de deterioro y de deformaciónes superficiales que se observan en la ruta D3 (tramo B), concuerdan con la escasa capacidad estructural del pavimento existente.

- 8. Los resultados obtenidos en los sondeos muestran que la estructura de los pavimentos es heterogénea en espesores y tipo de materiales. Por lo tanto, al momento de proceder a realizar el trabajo de reconstrucción es muy probable que se presenten situaciones especiales que no fueron detectadas en estas perforaciones.
- 9. Teniendo en cuenta la condición y calidad de los materiales constitutivos de estos pavimentos, la alternativa de rehabilitarlos por medio de la escarificación y estabilización de las capas superiores, tienen implicito los siguientes riesgos:
- Por la variabilidad de los espesores, podría eventualmente presentarse la situación de que el espesor que se debe escarificar supere el espesor total del pavimento existente, lo que implica que se estaría llegando a nivel de la sub-rasante, en cuyo caso deben tomarse en el sitio las medidas que corresponda.
- Como es imposible detectar por medio de los sondeos, todas las posibles situaciones que presentan las capas inferiores y la sub-rasante, esta opción de rehabilitación deja la incertidumbre de que no se tiene certeza absoluta de la calidad y propiedades de los materiales a dicho nivel del pavimento.
- La opción de triturar y estabilizar la parte superior del pavimento obliga a un detallado estudio en laboratorio que garantice el comportamiento adecuado de la estabilización en el largo plazo, especialmente cuando se tritura concreto asfáltico o capas estabilizadas, condición que debe garantizarse con un adecuado estudio de laboratorio y con un estricto control de calidad durante la ejecución de la obras, haciéndose cumplir todos los requerimientos de calidad de la base estabilizada, incluido la granulometría y la homogeneidad del proceso constructivo (espesores, humedad, compactación, dosificación de aditivo, etc).
- 10. Debe realizarse un riguroso control de calidad que garantice la calidad de la obra ejecutada. Conviene que en los términos de referencia quede suficientemente claro el marco de especificaciones, así como los criterios de aceptación, rechazo y penalización de obra por deficiencias en los trabajos a ejecutar.
- 11. De forma especial se subraya la necesidad de realizar un minucioso trabajo de inspección en, la conformación y compactación de la sub-rasante y de la capa de sub-base.

Los siguientes son algunos de los aspectos más importantes a considerar :

a- Cuando se excava hasta el nivel de sub-rasante (reconstrucción total), o cuando se escarifica parcialmente la sub-base existente, debe garantizarse que la sub-rasante esté debidamente compactada y que no existan suelos de mala calidad a ese nivel, en cuyo caso debe hacerse una sustitución de material. Por lo tanto debe proveerse un item para sustitución y conformación de sub-rasante.

Al momento de realizar este trabajo, podría también detectarse la necesidad de construir algún sub-drenaie, situación que debe preverse en el contrato.

- b- Cuando se escarifique parcialmente la sub-base, debe inspeccionarse cuidadosamente esta capa. Los problemas típicos que se pueden detectar son: deficiencias de espesor, contaminación por finos plásticos, saturación, falta de compactación, deficiencias granulométricas (especialmente sobre-tamaño), presencia de escombros, capas de piedra o capas de pavimentos antiguos. Todo esto debe analizarse cuidadosamente en el momento de realizar la excavación, para garantizar que la capa de sub-base finalmente conformada y compactada cumpla con los requerimientos del CR-77.
- 12. Teniendo en cuenta la variación de espesores de capas y calidad de materiales, detectada en los sondeos, es de esperar que las estimaciones previstas en el cuadro de cantidades sufran variaciones al momento de ejecutar los trabajos.

Además, conviene dejar previsto en el contrato algunos itemes que podrían requerirse eventualmente en los proyectos, como por ejemplo:

- Conformación de cordón y caño.
- Limpieza de alcantarillas y tragantes.
- Construcción de sub-drenajes.

000000000000000000000000000000000000

- Sustitución de sub-base existente.
- Sustitución de suelo de sub-rasante.
- 13. Cuando se aplique la alternativa de rehabilitación por medio de la escarificación y estabilización de las capas superiores existentes, debe hacerse una inspección cuidadosa en el momento de la escarificación para verificar que el material sub-yacente a esta capa, corresponde a una sub-base debidamente compactada. Caso contrario debe corregirse la anomalía que se detecte.
- 14. Es preferible construir la base estabilizada mezclada en planta. Con esto se garantiza una mejor calidad de la obra. Asimismo, debe diseñarse adecuadamente en laboratorio el proceso de estabilización, de modo que se utilicen las dosificaciones adecuadas de estabilizante, y que además el proceso de estabilización se garantice en el largo plazo.
- 15. El concreto asfáltico, debe construirse con lo más altos estándares de calidad. Conviene dejar bien claro en el cartel de licitación todo el proceso que debe seguir el contratista para garantizar la calidad de estos materiales, incluidos los requeriminentos para presentar a aprobación los diseños de mezcla, y los criterios de aceptación y rechazo.
- 16. Respecto a la graduación y algunas otras exigencias, se sugiere que en el cartel de licitación se establezcan normas especiales más allá de las exigencias del CR-77.

- 17. Se sugiere que el cartel de licitación y el proceso de control para el aseguramiento de la calidad queden claramente establecidos, previo al proceso licitatorio.
- 18. Por tratarse de vías urbanas, el tiempo de ejecución de los trabajos debe ser un criterio a considerar en la selección de ofertas. No obstante, este aspecto debe manejarse paralelamente con los procedimientos que se establezcan respecto al manejo de plazos (ampliaciones), las exigencias respecto al programa de trabajo y el monto de las multas por concepto de atrasos en la ejecución de la obra.
- 19. Debe quedar suficientemente claro, en el proceso de selección de ofertas, los procedimientos de control de tránsito y de señalización que utilizará el contratista EN CADA RUTA. No puede quedar al arbitrio este aspecto tan importante, especialmente en el caso de vías urbanas.

8. ESPECIFICACIONES ESPECIALES

La sub-rasante

En aquellos casos donde se requiere hacer excavación, la sub-rasante debe ser conformada y compactada a una densidad no menor al 97% del proctor estándar.

Si a nivel de sub-rasante se detectan suelos de mala calidad, como arcillas de alta plasticidad, suelos de baja capacidad de soporte (CBR < 3.5, al 95% del proctor estándar), limos colapsables, suelos orgánicos, escombros, etc; estos deben ser removidos y sustituidos por un material de préstamo de buena calidad.

Además debe verificarse en sitio que la sub-rasante existente esté debidamente conformada y compactada. Caso confrario debe procederse a su conformación y compactación.

En todo el proceso constructivo debe mantenerse una estricta supervisión técnica, de modo que no se apoye el pavimento sobre suelos blandos o mal compactados.

En el caso de la alternativa de rehabilitación por escarificación y estabilización de las capas superiores, debe tenerse en cuenta las recomendaciones señaladas en el capítulo 7 de este informe.

La sub-base

0000000000000000000000000000000000

En aquellos casos en que se escarifique parcialmente el pavimento, debe procederse de la siguiente forma :

Verificar que el espesor de sub-base existente cumpla con los requerimientos del diseño.

- Verificar que no se presenten zonas blandas, contaminadas con suelo de la sub-rasante, saturadas, etc. Todo esto debe ser reparado de forma apropiada, previo a la colocación de las capas superiores.
- -Verificar que la sub-base tenga una graduación apropiada, según el CR-77 y eliminar sobretamaño y cualquier otro aspecto relativo a la calidad del material de sub-base.
- Realizar el trabajo de conformación y compactación de la sub-base granular, según sea el caso, y compactar a una densidad mayor al 98% del proctor modificado, cumpliendo con el espesor especificado en el diseño. Caso de detectarse que la sub-base existente presenta deficiencias de calidad, pueden escogerse entre las siguientes opciones:
- Readecuar los materiales existentes eliminando lo que incumple con las especificaciones y adicionando nuevos agregados para superar las deficiencias.
- Hacer un tratamiento con cal, para mejorar las características del material. En este caso, debe de previo estudiarse en laboratorio el proceso a seguir para realizar dicha estabilización.
- Sustituir totalmente el material.

La base estabilizada

0000000000000000000000000000000000

Debe construirse una base estabilizada con cal de modo, que cumpla con lo siguientes requisitos:

- Debe tener una resistencia a la compresión simple equivalente al de una base tipo BE-35, según establece el CR-77.
- -Debe compactarse a una densidad mayor al 98% del proctor modificado.
- Los agregados deben ser no degradables y deben pasar los requerimientos de durabilidad AASHTO T-210, con índice de durabilidad mayor a 35 para el agregado grueso y el agregado fino.
- El diseño en laboratorio de la estabilización debe garantizar su comportamiento a largo plazo.
- Debe tener un módulo resilente mayor a 20000 kg/cm².
- Pueden aceptarse opciones de estabilización, siempre que demuestren igual o mejores propiedades en términos de : resistencia a compresión, módulo resilente, durabilidad a largo plazo y contracción por fraguado.
- Si por alguna circunstancia no se alcanzan las resistencias especificadas el diseñar la estabilización con cal (caso de materiales granulares con escasa cantidad de finos), debe entonces diseñarse en laboratorio una opción equivalente de estabilización, por ejemplo utilizando cal y cemento en iguales proporciones (50% de cal y 50% de cemento).

Capa de rodamiento

Debe ser una mezcla densa, graduación B (CR-77), que cumpla con los siguientes requerimientos :

- 80% de las partículas (agregado grueso) con 2 o más caras fracturadas.
- Indice de abrasión de Los Angeles menor de 35.
- Vacíos en el agregado mineral (VMA) mayor a 13%.
- Equivalente de arena mayor a 50.

Asfalto: debe cumplir con la normativa nacional vigente.

Disposiciones Adicionales

- Previo a realizar cualquier cambio de fuente de materiales, se debe proceder a formular el nuevo diseño de mezcla, y hasta tanto este sea aprobado, no se puede colocar mezcla asfáltica.
- No se pueden realizar cambios en el diseño de mezcla aprobado, a no ser que así lo apruebe la inspección del proyecto.
- Toda mezcla que sea calentada en planta a una temperatura que sobrepase en * 10°C respecto a la temperatura de mezclado, no se puede colocar en el proyecto.
- Las tolerancias máximas permisibles en la granulometría de la mezcla, respecto a las cantidades establecidas en el diseño de mezcla, son las siguientes:
- a- Sobre la malla de 19mm (incluida esta) * 5.0%.
- b- Entre las mallas de 19mm a la Nº 100, excluidas ambas: *,4.0%.
- c- En la malla Nº 100 : + 3.0%.
- d- En la malla Nº 200 : * 2.0%.
- La mezcla debe compactarse en sitio a una densidad mayor al 97% de la densidad obtenida en el ensayo AASHTO T-166.

ANEXO 1

ESTIMACION DE CARGAS POR EJE EN LAS ESTACIONES DE CONTEO

RUTA D1: De la iglesia de San Francisco de Dos Ríos hacia el sur, hasta 100 m este de la farmacia La Pacífica

TABLA No 1.1 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

		Cap. Máxima
	TPD	
ANO		5%
1997	1583	
1998	1662	
1999		1745
2000		1833
2001		1924
2002		2020
2003		2121
2004		2227
2005		2339
2006		2456
2007		2579
2008		2707
2009		2843
2010		2985
	SUMATORIA	27779

TABLA No 1.2 COMPOSICION VEHICULAR. HIPOTESIS BAJA DE CARGA

LIVIANOS	BUSES	CL	PESADOS
60	0	36	4

TABLA No 1.3 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0.001	1	0.07	1.15	
TIPO VEHICULO	LIVIANOS	BUSES	CL	PESADOS	TOTAL
EJES EQUIVALENTES	3.04E+03	0.00E+00	1.28E+05	2.33E+05	3.64E+05

RUTA D1: De la iglesia de San Francisco de Dos Ríos hacia el sur, hasta 100 m este de la farmacia La Pacífica

TABLA No 1.4 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

		Cap. Máxima
	TPD	
ANO		5%
1997	1583	
1998	1662	
1999		1745
2000		1833
2001		1924
2002		2020
2003		2121
2004		2227
2005		2339
2006		2456
2007		2579
2008		2707
2009		2843
2010		2985
Sec. 1398 2.3	SUMATORIA	27779

TABLA No 1.5 COMPOSICION VEHICULAR. HIPOTESIS ALTA DE CARGA

LIVIANOS	BUSES	CL	PESADOS
58	0	35	7

TABLA No 1.6 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0.001	1	0.07	1.15	
TIPO VEHICULO	LIVIANOS	BUSES	CL	PESADOS	TOTAL
EJES EQUIVALENTES	2.94E+03	0.00E+00	1.24E+05	4.08E+05	5.35E+05

RUTA D2 : De la farmacia La Pacífica hacia el este, hasta la intersección con la calle transversal

TABLA No 2.1 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

		Cap. Máxima
	TPD	
ANO		5%
1997	4716	
1998	4952	
1999		5199
2000		5459
2001		5732
2002		6019
2003		6320
2004		6636
2005		6968
2006		7316
2007		7682
2008		8066
2009		8469
2010		8893
	SUMATORIA	82759

TABLA No 2.2 COMPOSICION VEHICULAR. HIPOTESIS BAJA DE CARGA

LIVIANOS	BUSES	CL	PESADOS
89	2.5	5	3.5
		1.1	

TABLA No 2.3 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0.001	1	0.07	1.15	
TIPO VEHICULO	LIVIANOS	BUSES	CL	PESADOS	TOTAL
EJES EQUIVALENTES	1.34E+04	3.78E+05	5.29E+04	6.08E+05	1.05E+06

RUTA D2: De la farmacia La Pacífica hacia el este, hasta la intersección con la calle transversal

TABLA No 2.4 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

		Cap. Máxima
	TPD	
ANO		5%
1997	4716	
1998	4952	
1999		5199
2000		5459
2001		5732
2002		6019
2003		6320
2004		6636
2005		6968
2006		7316
2007		7682
2008		8066
2009		8469
2010		8893
	SUMATORIA	82759

TABLA No 2.5 COMPOSICION VEHICULAR. HIPOTESIS ALTA DE CARGA

LIVIANOS	BUSES	CL	PESADOS
86.5	4	5	4.5

TABLA No 2.6 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0.001	1	0.07	1.15	
TIPO VEHICULO	LIVIANOS	BUSES	CL	PESADOS	TOTAL
EJES EQUIVALENTES	1.31E+04	6.04E+05	5.29E+04	7.82E+05	1.45E+06

RUTA D3 : De la panadería Musmanni hacia el oeste, hasta la intersección con la carretera a Desamparados

TABLA No 3.1 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

	4.00	Cap. Máxima
	TPD	
ANO		5%
1997	7504	
1998	7879	
1999		8273
2000		8687
2001		9121
2002		9577
2003		10056
2004		10559
2005		11087
2006		11641
2007		12223
2008		12834
2009		13476
2010		14150
	SUMATORIA	131685

TABLA No 3.2 COMPOSICION VEHICULAR. HIPOTESIS BAJA DE CARGA

LIVIANOS	BUSES	CL	PESADOS
69	1	25	5

TABLA No 3.3 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0.001	1	0.07	1.15	
TIPO VEHICULO	LIVIANOS	BUSES	CL	PESADOS	TOTAL
EJES EQUIVALENTES	1.66E+04	2.40E+05	4.21E+05	1.38E+06	2.06E+06

RUTA D3: De la panadería Musmanni hacia el oeste, hasta la intersección con la carretera a Desamparados

TABLA No 3.4 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

		Cap. Máxima
	TPD	
ANO		5%
1997	7504	
1998	7879	
1999		8273
2000		8687
2001		9121
2002		9577
2003		10056
2004		10559
2005		11087
2006		11641
2007		12223
2008		12834
2009		13476
2010		14150
	SUMATORIA	131685

TABLA No 3.5 COMPOSICION VEHICULAR. HIPOTESIS ALTA DE CARGA

LIVIANOS	BUSES	CL	PESADOS
66	3	25	6
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wa A STATE

TABLA No 3.6 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0.001	1	0.07	1.15	Assessed 1
TIPO VEHICULO	LIVIANOS	BUSES	CL	PESADOS	TOTAL
EJES EQUIVALENTES	1.59E+04	7.21E+05	4.21E+05	1.66E+06	2.82E+06

ANEXO 2

SECCIONES TRANSVERSALES TIPICAS DEL PAVIMENTO EXISTENTE Y ENSAYOS DE LABORATORIO

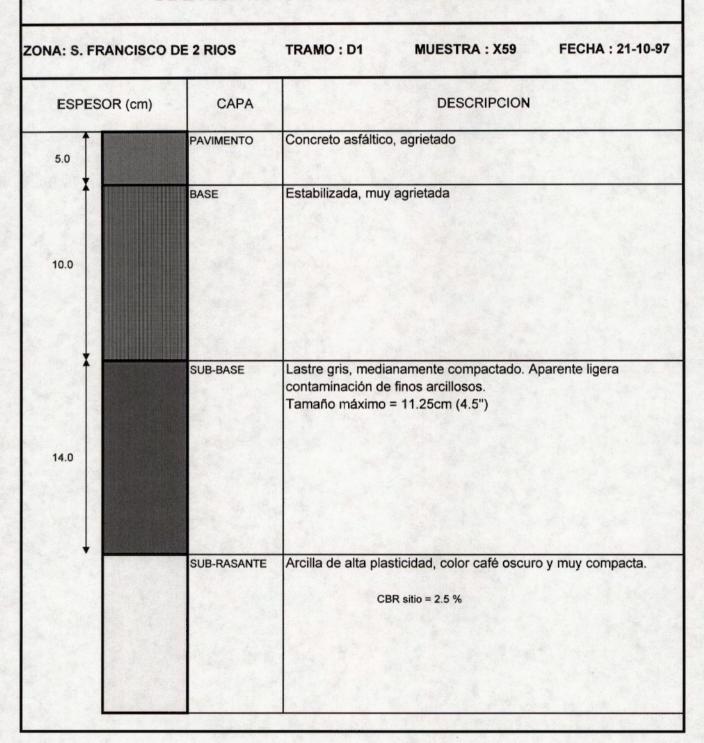
UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PROYECTO: MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE LAS CAPAS DE LA ESTRUCTURA DEL PAVIMENTO EXISTENTE

ESPESOR (cm)	CAPA	DESCRIPCIO	N
4.0	PAVIMENTO	Concreto asfáltico, agrietado	
+	BASE	Estabilizada, agrietada	
16.0			
	SUB-BASE	Lastre gris-café, compactado. Tamaño máximo = 10,0cm (4")	
25.5		LIMITES GRANUL. (%PAS) LL = 30,3 #4 = 59,7	
		LP = 25,8 #40 = 36,4 IP = 4,5 #200 = 18,6	
ļ	SUB-RASANTE	Arcilla limosa color café, plasticidad media.	
		LIMITES GRANUL. (%PAS) LL = 43,5 #4 = 100	CBR sitio < 2%
		LP = 22,9 #40 = 89,9 IP = 20,6 #200 = 70,2	

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PROYECTO: MUNICIPALIDAD DE SAN JOSE

IA. S. FRANCISCO	DE 2 RIOS	TRAMO : D2 MUESTRA : H23 FECHA : 18-4						
ESPESOR (cm)	CAPA	DESCRIPCION						
5.5	PAVIMENTO	Concreto asfáltico, agrietado						
İ	BASE	Estabilizada, agrietada						
6.0								
*	SUB-BASE	Lastre gris claro, compactado. Tamaño máximo = 13,75cm (5,5")						
		Material = No plástico						
19.0		GRANUL. (%PAS)						
		#4 = 50,4 #40 = 24,7						
		#40 = 24,7 #200 = 15,0						
+	SUB-RASANTE	Arcilla de alta plasticidad de color amarillento						
	1	GRANUL. (%PAS) CBR Lab= 3.8% CBR sitio > 7% #4 = 100						
		#40 = 99,5						
THE RESERVE OF THE PARTY OF THE		#200 = 97,3						


UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PROYECTO : MUNICIPALIDAD DE SAN JOSE

		The State of the S						
ESPESOR	R (cm)	CAPA	DESCRIPCION					
3.5		PAVIMENTO	Concreto asfáltico, agrietado					
*		BASE	Lastre gris, medianamente compactado. Tamaño máximo = 12,5cm (5,0")					
14.0			Material = No plástico					
14.0			GRANUL. (%PAS)					
			#4 = 42.6					
			#40 = 23.6					
			#200 = 12,0					
		SUB-BASE	NO EXISTE					
0.0								
+		SUB-RASANTE	Suelo arcilloso de color café oscuro.					
			LIMITES GRANUL. (%PAS) CBR Lab= 3.0% CBR sitio < 2.5%					
			LL = 52.6 #4 = 96.5					
			LP = 23,9 #40 = 87.8 IP = 28,6 #200 = 75.1					
			#200 = 73.1					

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PROYECTO: MUNICIPALIDAD DE SAN JOSE

	Harry	
ESPESOR (cm)	CAPA	DESCRIPCION
2.5	PAVIMENTO	Concreto asfáltico, agrietado
	BASE	Estabilizada, agrietada
13.5		
	SUB-BASE	Lastre gris, compactado. Tamaño máximo = 7,5cm (3,0")
		Material = No plástico
19.5		GRANUL. (%PAS)
		#4 = 62.1
		#40 = 43.0 #200 = 42.0
	SUB-RASANTE	Arcilla café oscuro de plasticidad media
	1 m 1	LIMITES
		LP = 34,9
		IP = 24,5

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PROYECTO : MUNICIPALIDAD DE SAN JOSE

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PROYECTO : MUNICIPALIDAD DE SAN JOSE

IA: S. FRANCISCO	DE 2 RIOS	TRAMO: D2 MUESTRA: X11 FECHA: 16-6-97						
ESPESOR (cm)	CAPA	DESCRIPCION						
3.0	PAVIMENTO	Concreto asfáltico	, agrietado					
İ	BASE	Estabilizada, muy	agrietada					
13.0								
	SUB-BASE	Lastre gris, ligerar Tamaño máximo	mente fino y medianamen = 5 cm (2")	te compactado.				
22.0								
+	SUB-RASANTE	Arcilla expansiva	de alta plasticidad, color c	afé oscuro.				
		СВ	R sitio = 7.0					

PRUEBA DE COMPACTACION

FECHA PROYECTO 23 DE ABRIL DE 1997 MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

SUELO CAFE

LOCALIZACION:

....

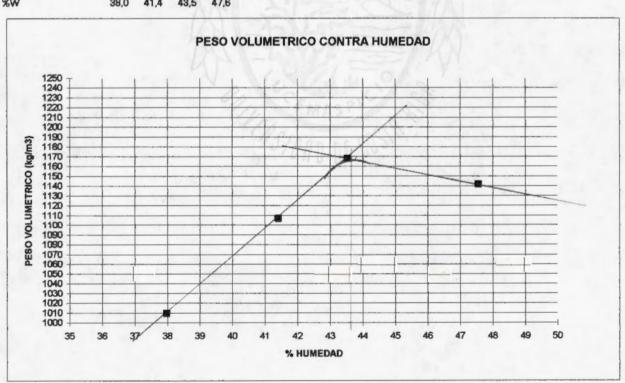
CARACTERIZACION DE MUESTRA:

SUBRASANTE

MUESTRA No:

D3 H53

PRUEBA: PROCTOR


COMPACTACION

DETERMINACION	1	2	3	4	5	6
Ww + Pmolde	5530	5693	5798	5806		
P molde	4215	4215	4215	4215		
Ww	1315	1478	1583	1591		
δw	1393	1565	1676	1685		
δs	1009	1107	1168	1142		

CONTENIDO DE HUMEDAD

No. CAPSULA	20	29	73	18
Ww + Wo	256,5	210,8	281,8	304,3
Ws + Wc	219,2	183,6	214,9	243,4
Ww	37,3	27,2	66,9	60,9
Wo	121,1	118,1	61,3	115,3
Ws	98,2	65,6	153,6	128,1
%W	38,0	41,4	43,5	47,6

8 max = 1168 Kg/m3 Wopt = 43.7 %

PRUEBA DE C.B.R.

PROYECTO

MUNICIPALIDAD DE SAN JOSE

INFORME Nº:

% EXPANSION

0.414

0.414 0.4848

FECHA:

28 DE ABRIL DE 1997

MUESTRA No:

D-3

MOLDE FECHA HORA

10 0,06

0.178

HUECO: H-53

LOCALIZACION:

SUBRASANTE

DESCRIPCIÓN DEL MATERIAL :

δm = 1168

Wo: 43.7 %

COMPACTACION

GOL	P.	MOLDE	Ww+M	Ww	Χm	Хs	% C	CAP.	Ww+C	Ws + C	Wc	е	Ww	Ws	% W
			10669												
	56	5	7153	3516	1652	1140	97,6	19	308,8	254.0	128,8		54.8	125,2	43,7
			10615												
	28	9	7172	3443	1626	1123	96,1	1	317,0	256,2	125,4		60,7	130,8	46,4
			10258												
	14	10	7375	2883	1371	946	81,0	6	250,1	205,7	105,4		44.5	100,3	44.3
															44.8

EXPANSION

LECTURA EXTENSOMETRO

			Lo	1 D	2 D	3 D	4 D	1 D	2 D	3 D	4 D
5	22-abr	6:15	298,00	325,00	326,00	328,00	329,00	9,06	9,40	10,07	10,40
9	22-abr	6:15	299,00	318,00	319,00	319,00	320,00	6,35	6,69	6,69	7,02
10	22-abr	6:15	325,00	306,00	306,00	306,00	309,00	-5,85	-5,85	-5,85	-4,92
			ESFUE	RZO U	NITARI	o cor	VTRA C	OMPACT	ACION		
MOLDE	Lo	0,025	0.050	0,075	0.100	0,150	0,200	0,250	0,300	0,350	0,400
	0,0	5,5	7.0	8,5	10,0	12.0	14.0	16,0	17.0	18,0	20,0
5	0.06	1,358	1,712	2,066	2,42	2,892	3,364	3,836	4.072	4,308	4.78
	0,0	3.0	4.0	5.0	6,0	8.0	10.0	11,0	12.0	13,0	14.0
9	0,06	0,768	1,004	1,24	1,476	1,948	2,42	2,656	2,892	3,128	3,364
	0,0	0,5	0,5	0,5	1.0	1,0	1,0	1,5	1.5	1,5	1.8

0.178 0.178 0.296 0.296 0.296 0.414

Ec. Resuelta	Valores corregidos para x		CORREGIDOS				
para y=0	x=0.1 x = 0.2	No. golpes	0,1	0,2	%COMPACT.	0,1	0,2
3,13E-03	1,03E-01 2,03E-01	56	2.42	3,36	97,6	3,44	3,19
1,77E-02	1,18E-01 2,18E-01	28	1,48	2,42	96,1	2,10	2,29
2,50E-02	1,25E-01 2,25E-01	14	0.30	0,30	81,0	0,42	0,28

PRUEBA DE C.B.R.

FECHA

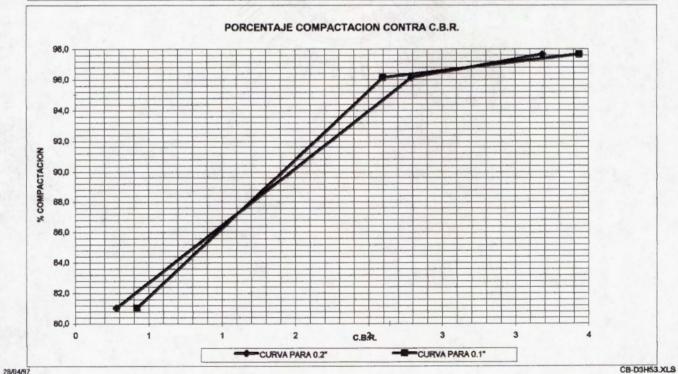
28 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

MUESTRA No:


D-3

HUECO:

H-53

LOCALIZACION: SUBRASANTE

. . MEDIANAMENTE PLASTICA

LIMITES DE ATTERBERG

FECHA

28 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

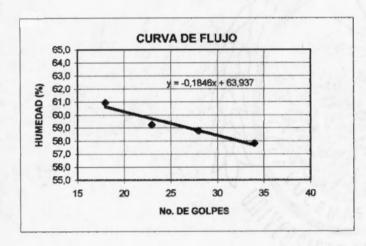
DESCRIPCION DE MATERIAL:

ARCILLOSA CAFE

D-3

MUESTRA No: LOCALIZACION:

CARACTERIZACION DE MUESTRA: SUBRASANTE


HUECO No:

H-53

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	34	28	23	18		RECIPIENTE No.	37	57	36
Wc + Ww (gr.)	32,27	38,9	33,02	33,77		Wc+Ww (gr.)	11,68	13,55	11,93
Wc + Ws (gr.)	27,37	33,16	27,71	28,02		Wc + Ws (gr.)	11,01	12,91	11,27
Ww	4,904	5,744	5,314	5,752		Ww	0,671	0,646	0,663
Wc	18,89	23,38	18,73	18,58		Wc	9,094	11,05	9,354
Ws	8,483	9,775	8,971	9,44		₩s	1,914	1,854	1,911
% W	57,8	58,8	59,2	60,9		% W	35,1	34,8	34,7
						PROMEDIO			34,9

RESUMEN

LIMITE LIQUIDO 59,3 LIMITE PLASTICO 34,9 INDICE DE PLASTICIDAD 24,5

PRUEBA DE COMPACTACION

FECHA

28 de abril de 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

SUBBASE

MUESTRA No:

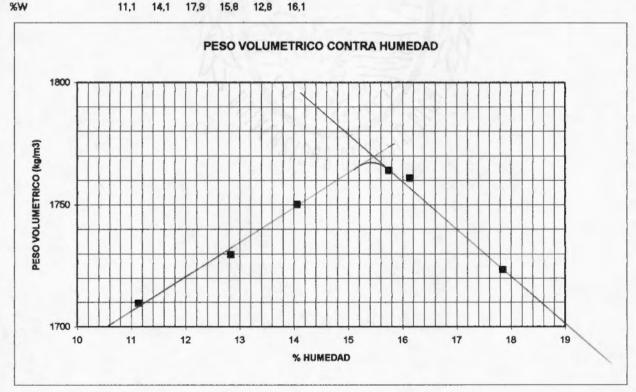
D-3

7

PRUEBA: PROCTOR MODIFICADO

COMPACTACION

53


HUECO

DETERMINACION 2 3 Ww + Pmolde 6009 6100 6133 6143 6058 P molde 4215 4215 4215 4215 4215 4215 WW 1794 1885 1918 1928 1843 1931 δw 1900 1996 2031 2042 1952 2045 δs 1710 1750 1723 1764 1730

CONTENIDO DE HUMEDAD

66 No. CAPSULA 69 11 64 45 6 Ww+Wc 287,6 264,1 260,2 286,5 166,3 266,1 Ws + Wc 226,7 252,9 152,0 243,8 269,0 243,1 WW 18,6 22,3 20,9 33,4 33,6 14,3 Wc 101,8 94,3 39,5 39,9 40,4 105,4 Ws 167,2 148,8 187,2 213,0 111,6 138,4

8max = 1768 Kg/m3 Wopt = 15.5%

LIMITES DE ATTERBERG

ACTIA	0 400		ACTIA D 404		AACUTO TO	0.04	AACUTO	T 00 04
ASTIM	U 423	1	ASTM D 424	У	AASHIU IO	9-94 ,	MASHIO	1 90-94

royecto: Munic ocalización : Esp	San	900	Q		Muestra: Sub base Fecha: 18-4- Descripción Material: Las tre guis					
ocalización :	D-2	20			Descripción	Material: La	25/18 8005			
emitido por : Esp	एका य	0-10-1	18-19	-20	Pro	fundidad :	Hueco : #53			
oímite Líquido :										
eterminación Nº	1	2	3	4	5		clatura:			
apsula Nº						Ww:	Peso humedo de muestra			
Nº de golpes	1			/	1	Ws:	Peso seco de muestra			
IWc + Ww (g)				/		Wc:	Peso de capsula			
(Wc + Ws (g)						W:	Peso de humedad en muestra			
(g)	-					%W:	Porcentaje de humedad			
//c (g)										
Vs (g)		/			T					
6W (g)		/								
límite Plástico :	/						Ímite Plástico			
Determinación Nº	1	2	3	4						
Recipiente Nº			1			1				
Wc + Ww (g)	1			N. Tark	9	1 /				
Vc + Ws (g)			/	F-0	l led	1/1				
V (g)					% Humedad	11	1/2 11/9			
Vc (g)		/				11	19 11			
Vs (g)		/		1						
%W (g)	/									
	2				15	17 19 21	23 25 27 29 31 33 35 Nº Goipes			
							it Golpes			
Limite de contracción :	-									
Determinación Nº	!	1	2	3	4					
V plato rec. + suelo hume	do (g)									
V plato rec. + suelo seco	(g)									
V plato recubierto	(g)									
V suelo seco, Ws	(g)						e Líquido :			
IW agua. Ww	(g)						e Plastico :			
Contenido Agua Wo %							e Plasticidad :			
Vol. suelo húmedo, Vo	(cm ³)					Limit	e Contracción :			
	(cm³)									
Limite de contracción. LC	=			100						
LC = W ₂ - ({ V ₂	- Vf) * 10	00 / Ws))				,			
Fecha de Prueba :	5-9	7				a :				
Experimentador :	lan	10			Revisado po	or:	LIM-ATT.XLS			

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA 7 DE MAYO DE 1997

PROYECTO MUNICIPALIDAD DE SAN JOSE

MUESTRA: D-3 HUECO: 53

MUESTRA: SUBBASE

UBICACION:

Análisis mecánico

PESO INICIAL: 11400,0 g.

PESO FINAL: 6616,0 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
4"	100,00	0	0,0	0,0	100,0
3"	76,20	1084,6	9,5	9,5	90,5
11/2"	38,10	301,6	2,6	12,2	87,8
1"	25,40	294,4	2,6	14,7	85,3
#4	4,75	2637,8	23,1	37,9	62,1
#40	0,45	2175,6	19,1	57,0	43,0
#200	0,07	117,1	1,0	58,0	42,0

PRUEBA DE COMPACTACION

FECHA

28 de abril de 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

SUELO

LOCALIZACION:

SUBRASANTE

CARACTERIZACION DE MUESTRA: MUESTRA No:

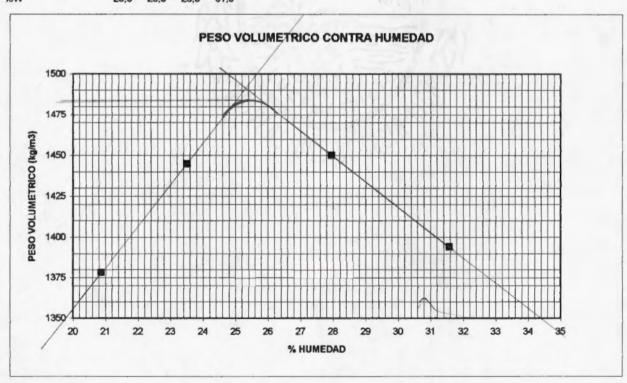
D-3 HUECO

PRUEBA: PROCTOR ESTANDAR

COMPACTACION

21

DETERMINACION 1 2 3 4 5 6


Ww+Pmolde 5788 5900 5967 5947

P molde 4215 4215 4215 4215 Ww 1573 1685 1752 1732 δw 1666 1784 1855 1834 δs 1378 1445 1450 1394

CONTENIDO DE HUMEDAD

No. CAPSULA 8 26 23 Ww + Wo 316,9 285,6 271,8 305,1 Ws + Wc 284,2 255,4 239,0 262,0 WW 32,7 30,2 32,8 43,1 Wc 127,6 127,0 121,8 125,4 Ws 156,6 128,4 117,3 136,5 %W 20,9 23,5 28,0 31,8

Vmax = 1484 kg/m3 Wopt = 25.4 %

PRUEBA DE C.B.R.

PROYECTO MUNICIPALIDAD DE SAN JOSE

INFORME N':

FECHA:

28 DE ABRIL DE 1997

MUESTRA No: LOCALIZACION:

DESCRIPCIÓN DEL MATERIAL :

D-3

HUECO: H-21

SUBRASANTE

δm= 1484

Wo: 25,4 %

COMPACTACION

GOLP.	MOLDE	Ww+M	Ww	Χm	Xs	% C	CAP	Ww+C	Ws + C	Wc	Ww	Ws	%W	
		11215	****	****	~~					,,,,	***	****	,044	
56	0		3812	1806	1424	96.0	38	289,2	256,5	128,6	32.7	127,9	25,6	
28	8		3620	1700	1340	90,3	31	297,4	255,8	105,8	41.5	150,0	27.7	
14	13	10492 7190	3302	1562	1231	83.0	57	262.9	220.8	66.6	42.1	154,2	27,3	
		. 100				03,0	-	202.0	220,0	30,0	746,1	,04,1	26,8	

EXPANSION

MOLDE FECHA HORA		HORA		LECTUR	A EXTE	NSOMETR	OF	% EXPANSION					
			ما	10	20	30	4 D	1 D	2 D	3 D	4 D		
0	23-abr	12:00	343.00	408,00	417.00	420,00		18,95	21,57	22,45			
8	23-abr	12:00	308,00	380,00	382,00	386,00		23,38	24,03	25,32			
13	23-abr	12:00	309,00	360,00	362,00	382,00		16,50	17,15	17,15			

ESFUERZO UNITARIO CONTRA COMPACTACION

MOLDE	ما	0.025	0,050	0.075	0,100	0.150	0,200	0.250	0,300	0,350	0.400
	0,0	4,0	7.0	9,0	11.0	13,0	15,0	17.0	18,0	19,0	20.0
0	0.06	1,004	1,712	2,184	2,656	3,128	3,6	4,072	4,308	4.544	4.78
	0.0	3,0	5.0	6.0	7.0	8.0	9.0	10,0	10,5	11.0	12,0
8	0.06	0.768	1,24	1,476	1,712	1,948	2.184	2,42	2,538	2,656	2,892
	0,0	1.0	1.5	2.0	2,5	3.0	3,5	4,0	4.5	5,0	5,5
13	0.06	0,296	0.414	0.532	0.65	0,768	0.886	1,004	1,122	1.24	1,358

	CALCU	LADOS	S	CORREGIDOS				
No. galpes	0,1	0,2	%COMPACT.	0,1	0,2			
56	2,66	3,60	96,0	3,77	3,41			
28	1.71	2,18	90,3	2,43	2.07			
14	0.65	0.89	83,0	0.92	0.84			

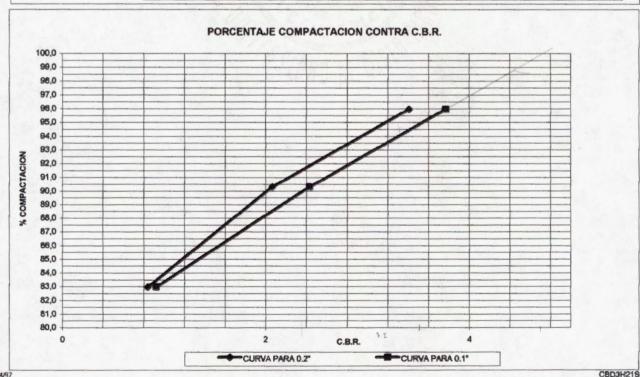
PRUEBA DE C.B.R.

FECHA

28 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE


DESCRIPCION DE MATERIAL:

MUESTRA No: D-3

HUECO: H-21

LOCALIZACION:

28/04/97

CBD3H219.XLS

LIMITES DE ATTERBERG

FECHA

23 DE ABRIL DE 1997

PROYECTO

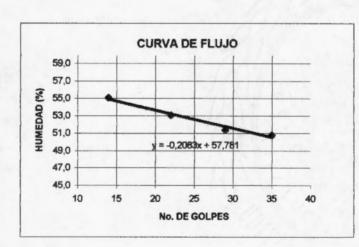
MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

SUELO ARCILLOSO: D-3

HUECO No:

H-21


MUESTRA No: LOCALIZACION:

CARACTERIZACION DE MUESTRA: SUBRASANTE

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	35	29	22	14		RECIPIENTE No.	43	54	36
Wc + Ww (gr.)	35,71	32,35	35,92	32,78		Wc+Ww (gr.)	14,35	12,87	12,51
Wc + Ws (gr.)	31,56	27,68	31,54	27,8		Wc+Ws (gr.)	13,72	12,22	11,88
Ww	4,152	4,673	4,38	4,988		Ww	0,632	0,656	0,627
Wc	23,38	18,58	23,28	18,73		₩c	11,1	9,453	9,254
Ws	8,174	9,095	8,252	9,062		Ws	2,618	2,762	2,627
% W	50,8	51,4	53,1	55,0		% W	24,1	23,8	23,9
						PROMEDIO			23,9

RESUMEN

LIMITE LIQUIDO 52,6 LIMITE PLASTICO 23,9 INDICE DE PLASTICIDAD 26,6

CARACTERISTICAS DE LOS AGREGADOS

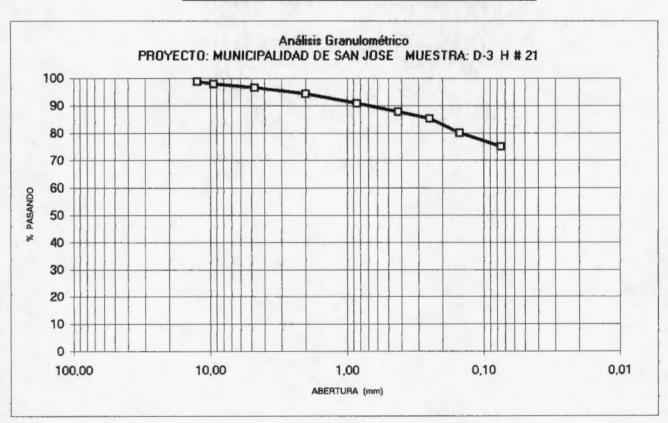
ANALISIS GRANULOMETRICO

FECHA 30 DE ABRIL DE 1997 PROYECTO MUNICIPALIDAD DE SAN JOSE MUESTRA: SUBRASANTE

UBICACION:

MUESTRA: D-3 HUECO: # 21

Análisis mecánico (lavado)


PESO INICIAL:

669,5 g.

PESO FINAL:

167,0 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
1/2	12,50	8,2	1,2	1,2	98,8
3/8	9,50	5,4	0,8	2,0	98,0
#4	4,75	9,6	1,4	3,5	96,5
#10	2,00	14,9	2,2	5,7	94,3
#20	0,85	22,8	3,4	9,1	90,9
#40	0,43	20,6	3,1	12,2	87,8
#60	0,25	16,4	2,5	14,6	85,4
#100	0,15	35,7	5,3	20,0	0,08
#200	0,075	33,0	4,9	24,9	75,1

PRUEBA DE COMPACTACION

PROYECTO MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LASTRE GRIS CLARO

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

BASE

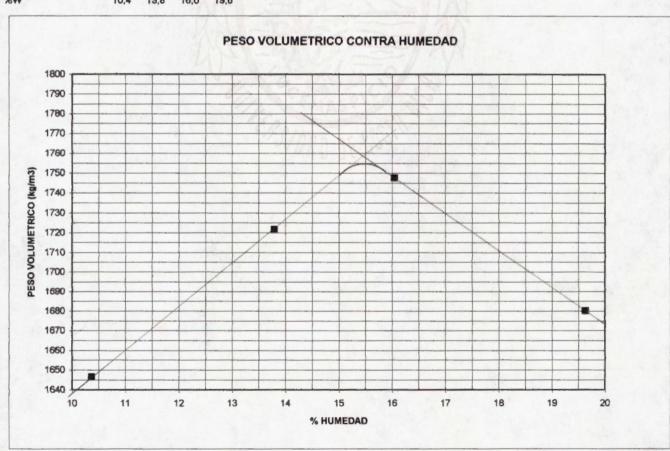
MUESTRA No:

DETERMINACION

D-3

HUECO 21

PRUEBA: PROCTOR MODIFICADO


COMPACTACION 5 6 7

Ww + Pmolde 5928 6062 6127 6110 P molde 4212 4212 4212 4212 Ww 1716 1850 1915 1898 8 w 1817 1959 2028 2010 δs 1647 1722 1748 1680

CONTENIDO DE HUMEDAD

No. CAPSULA 45 52 46 11 369,7 484,8 453,5 331,5 Ww + Wc Ws + Wc 338.8 430.6 396,1 283,6 Ww 30,9 54,2 57,4 47,9 Wc 40.4 38,1 38.2 39,6 Ws 298,4 392,5 357.9 244.0 %W 10,4 13,8 16,0 19,6

8max = 1755 kg/m3 Wopt = 15.5%

LIM-ATT.XLS

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

LIMITES DE ATTERBERG

ASTIVI	U 423 ,	ASTINI L	1424	У	AASHTO 189-94 ,	AASHIU	1 90-94
			1	1			

Proyecto: Munic S	-3			Descripció	n Material: /	sotre cal
Remitido por :				P	rofundidad :	Se Fecha: 14-5-97 25410 Cale Hueco: #21
Límite Líquido :						
Determinación Nº 1	2	3	4	5	Nomen	clatura :
Capsula Nº			-		Ww:	Peso humedo de muestra
Nº de golpes		la de La			Ws:	Peso seco de muestra
Nc + Ww (g)		/			Wc:	Peso de capsula
Nc + Ws (g)					W:	Peso de humedad en muestra
N (g)	/				%W:	Porcentaje de humedad
Nc (g)	/					
Ns (g)						
%W (g)						
					_	
_imite Plástico :				т т	1 1 L	Ímite Plástico
Determinación Nº 1	2	3	4			
Recipiente Nº		1		+		I A A
Nc + Ww (g)				pa		
Wc + Ws (g)	/			% Humedad		1 1 0
N (g)	X			= +		\ M \ \
Wc (g)	/	-		9		Ψ
Ws (g)					11/1	
%W (g)						
				15	17 19 21	23 25 27 29 31 33 N° Golpes
					The second second	N Golpes
Límite de contracción : Determinación Nº	1	2	3	4		
	-	1 -	1 3	4		
N plato rec. + suelo humedo (g)		-				
N plato rec. + suelo seco (g)		-				
N plato recubierto (g)					1 (mit	Líquido:
W suelo seco, Ws (g) W agua, Ww (g)						e Plastico :
			-			
Contenido Agua W ₀ %		-				Plasticidad :
Vol. suelo húmedo, V ₀ (cm ³)					Limite	Contracción :
Vol. suelo seco, V _f (cm³)						
_imite de contracción, LC =			1			
LC = W ₀ - ((V ₀ - Vf) * 1	00 / Ws)				
						,

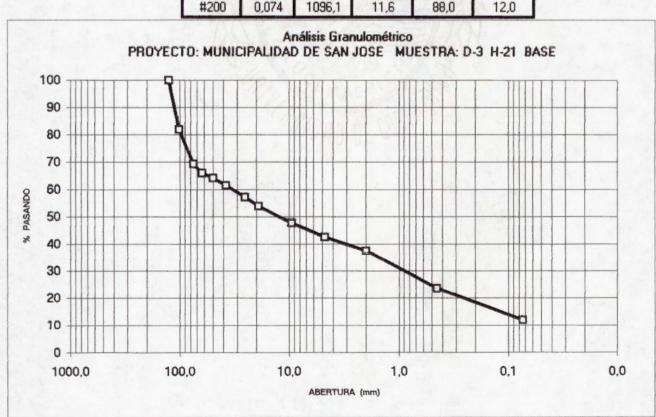
CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA 22 DE MAYO DE 1197 PROYECTO MUNICIPALIDAD DE SAN JOSE

MUESTRA: D-3 HUECO: 21

MUESTRA : BASE


UBICACION:

Análisis mecánico (lavado)

PESO INICIAL: 9446,0 g.

PESO FINAL: 8320,0 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
5"	127,0	0	0	0	100
4"	101,6	1710,9	18,1	18,1	81,9
3"	75,0	1191,1	12,6	30,7	69,3
21/2"	63,0	318,3	3,4	34,1	65,9
2"	50,0	167,3	1,8	35,9	64,1
11/2"	38,1	250,7	2,7	38,5	61,5
1"	25,4	415,7	4,4	42,9	57,1
3/4"	19,1	302,1	3,2	46,1	53,9
3/8"	9,5	584,0	6,2	52,3	47,7
#4	4,75	480,8	5,1	57,4	42,6
#10	2,00	471,3	5,0	62,4	37,6
#40	0,45	1323,9	14,0	76,4	23,6
#200	0,074	1096,1	11,6	88,0	12,0

PRUEBA DE COMPACTACION

FECHA

30 de abril de 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

ARCILLA COLOR CAFE AMARILLENTA

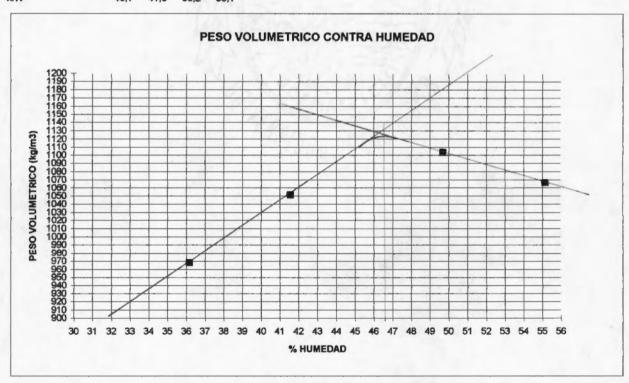
LOCALIZACION:

CARACTERIZACION DE MUESTRA: SUBRASANTE

MUESTRA No:

D-2 HUECO #23

PRUEBA: PROCTOR ESTANDAR


COMPACTACION

DETERMINACION 2 Ww + Pmolde 5775 5620 5460 5777 4215 P molde 4215 4215 4215 WW 1560 1405 1245 1562 δw 1652 1488 1318 1654 δs 1104 1051 968 1066

CONTENIDO DE HUMEDAD

No. CAPSULA 46 51 52 Ww + Wo 323,7 236,9 284,9 304,9 Ws + Wo 229,5 178,4 219,7 210,1 WW 04,2 58,5 65,2 94,8 Wo 40,0 37,7 39,6 38,2 Ws 189,5 140,7 180,1 171,9 %W 49,7 41,6 36,2 55,1

tmax = 1122 kg/m3 Wopt = 46.5%

PRUEBA DE C.B.R.

PROYECTO

MUNICIPALIDAD DE SAN JOSE

INFORME N°: FECHA:

8 DE MAYO DE 1997

MUESTRA No:

13 0.06

HUECO: H-23

SUBRASANTE

LOCALIZACION: DESCRIPCIÓN DEL MATERIAL ARCILLA CAFE AMARILLENTA

δm= 1122

Wo: 46,5 %

COMPACTACION

GOLP.	MOLDE	Ww+M	Ww	Χm	Хs	% C	CAP.	Ww+C	Ws + C	Wc	•	Ww	Ws	%W	
		10803													
56	3	7234	3569	1677	1156	103,2	49	308,8	254,0	128,8		54,8	125,2	43.7	
		10582													
28	14	7180	3402	1608	1111	99,0	51	317,0	256,2	125,4		60.7	130,8	46,4	
		10293													
14	13	7187	3106	1469	1014	90,4	64	250,1	205,7	105,4		44.5	100,3	44,3	
														44.8	

EXPANSION

1,476 1,712 1,948 1,948 2,184 2,184

MOLDE	FECHA	HOHA		LECTUR	A EXIE	NOOME	HU		% EXPAN	SIUN	
			Lo	1 D	2 D	3 D	4 D	10	20	3 D	4 D
3	30-abr	1:30	296,50	301,00	312,00	317.00	312,00	1,52	5,23	6,91	5,23
14	30-abr	1:30	297,00	318,00	329,00	334,00	328.00	7.07	10,77	12,46	10,44
13	30-abr	1:30	304,00	325,00	332,00	337,00	332,00	6,91	9,21	10,86	9,21
			ESFUE	RZO U	NITARI	o cor	VTRA C	ОМРАСТ	ACION		
MOLDE	لما	0,025	0,050	0.075	0,100	0,150	0.200	0,250	0,300	0,350	0,400
	0.0	13,0	19,0	23,0	27.0	31.0	34,0	38,0	41,0	43.0	45,0
3	0,06	3,128	4,544	5,488	6,432	7.376	8,084	9.028	9,736	10,208	10,68
	0.0	8,0	11.0	13,0	14.0	16,0	17.5	19.0	20,0	21,5	23,0
14	0.06	1,948	2,656	3,128	3,364	3,836	4.19	4,544	4.78	5,134	5,488
	0.0	6,0	7.0	8,0	8,0	9.0	9,0	9,0	9,0	9,0	9,0

2,184

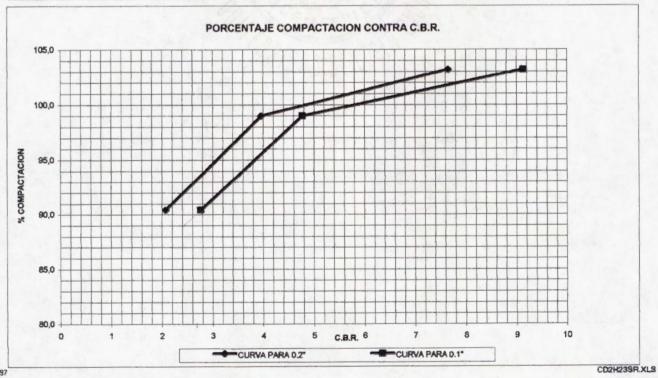
2.184

2.184

2,184

	CALCU	LADO:	S	CORREG	IDOS
No. golpes	0,1	0,2	%СОМРАСТ.	0,1	0,2
56	6,43	8,08	103,2	9,14	7.66
28	3,36	4.19	99,0	4.78	3,97
14	1.95	2.18	90.4	2.77	2.07

PRUEBA DE C.B.R.


8 DE MAYO DE 1997 FECHA

MUNICIPALIDAD DE SAN JOSE PROYECTO

DESCRIPCION DE MATERIAL: ARCILLA CAFE AMARILLENTA HUECO: H-23 D-2

SUBRASANTE LOCALIZACION:

8/05/97

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

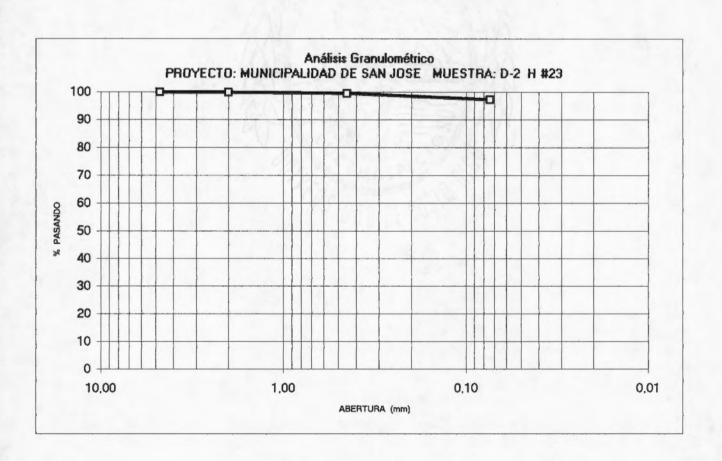
FECHA 30 DE ABRIL DE 1997

PROYECTO MUNICIPALIDAD DE SAN JOSE

MUESTRA: SUBRASANTE

UBICACION:

MUESTRA: D-2 HUECO: #23


Análisis mecánico (lavado)

PESO INICIAL: 471,2 g.

PESO FINAL:

12,7 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
#4	4,75	0,0	0,0	0,0	100,0
#10	2,00	0,5	0,1	0,1	99,9
#40	0,45	1,7	0,4	0,5	99,5
#200	0,074	10,5	2,2	2,7	97,3

PRUEBA DE COMPACTACION

FECHA PROYECTO 17 DE MAYO DE 1997 MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LASTRE GRIS CLARO

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

SUBBASE

MUESTRA No:

D-2

HUECO 23 PRUEBA: PROCTOR MODIFICADO

COMPACTACION

7

DETERMINACION Ww + Pmolde

2 3

P molde WW

6010 6056 6107 6198 6179 4212 4212 4212 4212 4212 1798 1844 1895 1986 1967

δw δs

1904 1953 2007 2083 2103

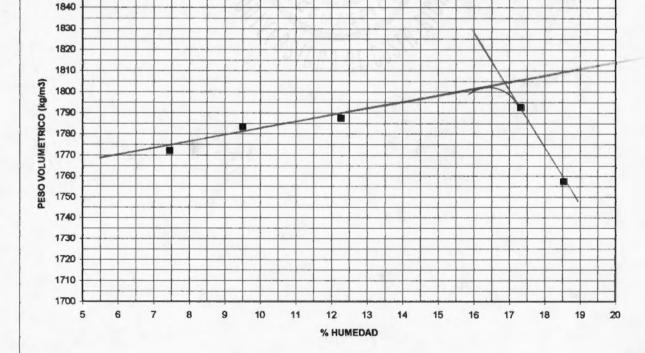
1772 1783 1787 1793 1757

CONTENIDO DE HUMEDAD

No. CAPSULA Ww + Wo

23 20 25 374,5 316,4 397,1 452,4 381,6

Ws + Wc WW


357,0 299,4 366,5 404,1 341,5 17,5 17,0 30,6 - 48,3 40,1 121,8 121,0 117,3 125,4 125,3

Wc Ws %W

235,2 178,4 249,3 278,7 216,2 7,5 9,5 12,3 17,3 18,5

Unax = 1803 kg/m3 Wopl = 16.5%

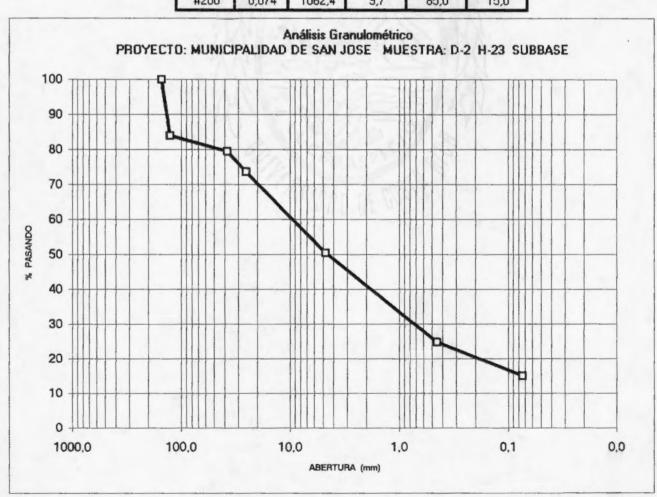
PESO VOLUMETRICO CONTRA HUMEDAD 1850

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA 22 DE MAYO DE 1197 PROYECTO MUNICIPALIDAD DE SAN JOSE

MUESTRA: D-2 HUECO: 23


MUESTRA : SUBBASE

UBICACION:

Análisis mecánico (lavado)

PESO INICIAL: 10921,0 g. PESO FINAL: 9303,9 g.

ldentificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
6"	152,4	0,0	0,0	0,0	100,0
5"	127,0	1753,8	16,1	16,1	83,9
11/2"	38,1	487,1	4,5	20,5	79,5
1"	25,4	638,2	5,8	26,4	73,6
#4	4,75	2539,2	23,3	49,6	50,4
#40	0,45	2801,6	25,7	75,3	24,7
#200	0,074	1062,4	9,7	85,0	15,0

LIMITES DE ATTERBERG

ASTM D 423 , ASTM D 424 y AASHTO T 89-94 , AASHTO T 90-94

Proyecto: Munic. &	. 7			Descripción Ma	torial: Contract i Access
	-			Descripcion Ma	terial: Castre gris ascurs didad: Hueco: #23
Remitido por :				Profun	didad: Hueco:#43
ímite Líquido :		,			
Determinación Nº 1	2	3	4	5	Nomenclatura :
Capsula Nº					Ww: Peso humedo de muestra
lº de goipes		1	?		Ws: Peso seco de muestra
Vc + Ww (g)					Wc : Peso de capsula
Vc + Ws (g)		V			W: Peso de humedad en muestra
V (g)	/				%W: Porcentaje de humedad
Vc (g)	/		7		
Vs (g)	/				
6W (g)					
					LÍmite Plástico
ímite Plástico :				TI	Limite Plastico
Determinación Nº 1	2	3	4		
Recipiente Nº				1	
Vc + Ww (g)	1			dad	1 1 1 1
Vc + Ws (g)	V			% Humedad	
V (g)				1 = +	1 // \ \P \ \ \
Vc (g)	/				
Ns (g)	/				
%W (g)	٢				
				15 17	19 21 23 25 27 29 31 33 3
ímite de contracción :					
			_		
	1 1	7 1	-4	1 4 1	
eterminación Nº	1	2	3	4	
eterminación Nº V plato rec. + suelo humedo (g)	1	2	3	4	
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g)	1	2	3	4	
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g)	1	2	3	4	Límite Líquido :
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g)	1	2	3	4	Límite Líquido :
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g) V agua, Ww (g)	1		3	4	Límite Plastico :
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g) V agua, Ww (g) Contenido Agua W ₀ %	1	2	3	4	Límite Plastico :
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g) V agua, Ww (g) Contenido Agua W ₀ % Vol. suelo húmedo, V ₀ (cm ³)	1		3	4	Límite Plastico :
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g) V agua, Ww (g) Contenido Agua W ₀ % Vol. suelo seco, V ₁ (cm ³) Vol. suelo seco, V ₁ (cm ³)	1		3	4	Límite Plastico :
Oeterminación N° V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g) V agua, Ww (g) Contenido Agua W ₀ % Vol. suelo húmedo, V ₀ (cm ³) Vol. suelo seco, V ₁ (cm ³) Límite de contracción, LC =			3		Límite Plastico :
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g) V agua, Ww (g) Contenido Agua W ₀ % Vol. suelo seco, V ₁ (cm ³) Vol. suelo seco, V ₁ (cm ³)			3	4	Límite Plastico :
Oeterminación N° N plato rec. + suelo humedo (g) N plato rec. + suelo seco (g) N plato recubierto (g) N suelo seco, Ws (g) N agua, Ww (g) Contenido Agua W ₀ % Vol. suelo húmedo, V ₀ (cm ³) Límite de contracción, LC =			3		Límite Plastico :
V plato rec. + suelo humedo (g) V plato rec. + suelo seco (g) V plato recubierto (g) V suelo seco, Ws (g) V agua, Ww (g) Contenido Agua W ₀ % Vol. suelo húmedo, V ₀ (cm ³) Vol. suelo seco, V ₁ (cm ³) Imite de contracción, LC = LC = W ₀ - ((V ₀ - Vf) * 1	00 / Ws)		3		Límite Plastico : Indice Plasticidad : Límite Contracción :
Determinación N° W plato rec. + suelo humedo (g) W plato rec. + suelo seco (g) W plato recubierto (g) W suelo seco, Ws (g) W agua, Ww (g) Contenido Agua W ₀ % Vol. suelo húmedo, V ₀ (cm³) Vol. suelo seco, V _f (cm³) Límite de contracción, LC =	00 / Ws)		3	Temperatura:	Límite Plastico :

PRUEBA DE COMPACTACION

19 DE MAYO DE 1997 **FECHA** MUNICIPALIDAD SAN JOSE PROYECTO

DESCRIPCION DE MATERIAL:

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

MUESTRA No:

DETERMINACION

SUBBASE

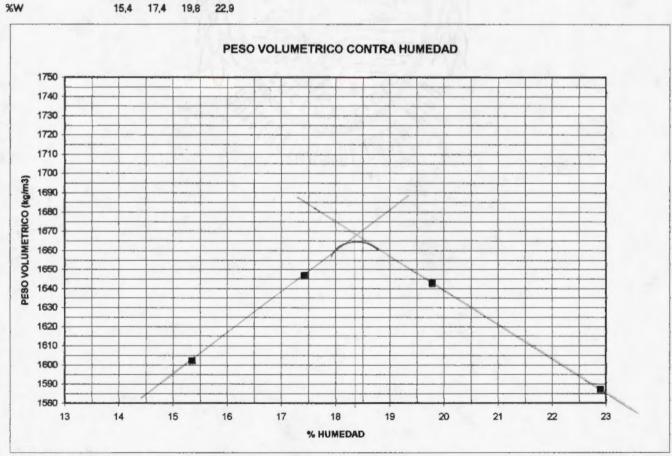
D-1

3

2

HUECO #22

PRUEBA: PROCTOR MODIFICADO


COMPACTACION 6

Ww + Pmolde 5957 6038 6054 6070 P molde 4212 4212 4212 WW 1745 1826 1858 1842 δw 1848 1934 1951 1968 δs 1602 1647 1643 1587

CONTENIDO DE HUMEDAD

No. CAPSULA 66 36 17 8 Ww + Wc 508.0 545.1 564.3 679.0 Ws + Wc 457.5 478.2 488.5 576.6 WW 50,5 102,4 66,9 75,8 Wo 128,6 94,3 105,4 129,5 Ws 328.9 383.9 383.1 447,1

Vmax = 1665 Kg/m3 Wopt = 18.4%

LIMITES DE ATTERBERG

FECHA

19 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

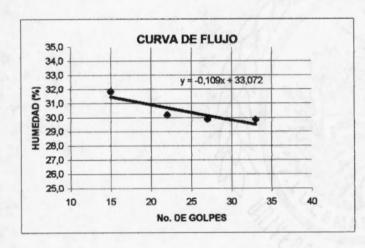
LASTRE

MUESTRA No:

D-1

LOCALIZACION: CARACTERIZACION DE MUESTRA:

SUBBASE


HUECO No:

H-22

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	33	27	22	15		RECIPIENTE No.	3	36	54
Wc+Ww (gr.)	27,93	35,54	31,03	39,08		Wc + Ww (gr.)	13,79	12,53	12,25
Wc+Ws (gr.)	25,29	32,75	28,14	36,61		Wc + Ws (gr.)	13,2	11,88	11,67
Ww	2,64	2,792	2,887	2,47		Ww	0,587	0,653	0,581
Wc	16,44	23,4	18,58	28,85		Wc	10,89	9,354	9,453
Ws	8,847	9,35	9,563	7.762		Ws	2,316	2,522	2,217
% W	29,8	29,9	30,2	31,8		% W	25,3	25,9	26,2
						PROMEDIO			25.8

RESUMEN

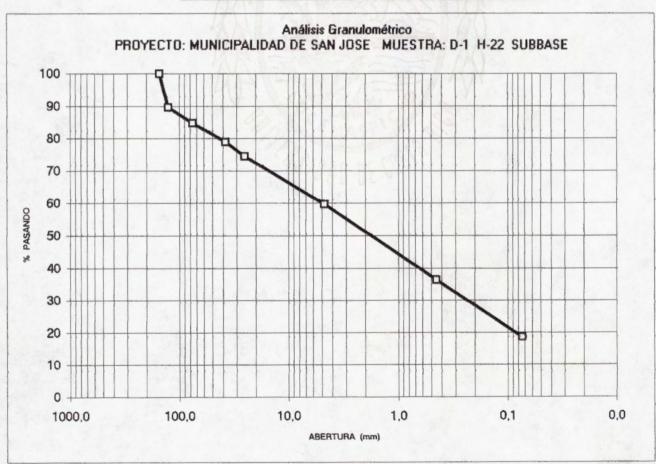
30,3 LIMITE LIQUIDO LIMITE PLASTICO 25,8 INDICE DE PLASTICIDAD 4,5

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA 29 DE MAYO DE 1197 PROYECTO MUNICIPALIDAD DE SAN JOSE MUESTRA: SUBBASE

UBICACION:


MUESTRA: D-1 HUECO:

Análisis mecánico (lavado)

PESO INICIAL: 12192,0 g.

PESO FINAL: 9972,3 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
6"	152,4	0,0	0,0	0,0	100,0
5"	127,0	1266,8	10,4	10,4	89,6
3"	76,2	587,9	4,8	15,2	84,8
11/2"	38,1	716,5	5,9	21,1	78,9
1"	25,4	534,6	4.4	25,5	74,5
#4	4,75	1808,7	14,8	40,3	59,7
#40	0,45	2837,8	23,3	63,6	36,4
#200	0,074	2171.8	17,8	81,4	18,6

PRUEBA DE C.B.R.

PROYECTO

MUNICIPALIDAD DE SAN JOSE

INFORME N°:

FECHA:

% EXPANSION

6,55

16,0

3,836

6,904

16,0

3,836

7,376

16,0

3,836

5,96

15,5

3,718

13 DE MAYO DE 1997

MUESTRA No: LOCALIZACION: D-1

HUECO: H-22

SUBRASANTE

DESCRIPCIÓN DEL MATERIAL : LIMO ARCILLOSO CAFE

MOLDE FECHA HORA

15 0.06

4 0.06

0,0

9,5

11,5

δm = 1440

Wo: 28.2 %

COMPACTACION

GOLP.	MOLDE	Ww+M	Ww	Χm	Хs	% C	CAP.	Ww+C	Ws+C	Wc	e	Ww	Ws	%W
		10967												
56	1	7131	3836	1811	1405	97,6	30	329,4	283,9	125,4		45.5	158,5	28,7
		10902												
28	15	7164	3738	1767	1371	95,2	22	321,9	273,6	105,7		48,3	167,9	28,8
		10560												
14	4	7176	3384	1588	1233	85,6	43	345,5	296,5	127,7		49.0	168,8	29,0
														28,8

EXPANSION

1,948 2,892 3,6 4,308 5,016 5,488

2,302 2,774 3,128 3,246 3,482 3,6

13,0 13,5

LECTURA EXTENSOMETRO

			Lo	1 D	2 D	3 D	4 D	1 D	2 D	3 D	4 D
1	2-may	3:30	224,00	217,00	217,00	217,00	220,00	-3,13	-3.13	-3,13	-1,79
15	2-may	3:30	322,00	319,00	319,00	319,00	320,00	-0,93	-0,93	-0.93	-0,62
4	2-may	3:30	284,00	287,00	284,00	287,00	288,00	1,06	0,00	1,06	1,41
			ESFUE	RZO U	NITARI	o cor	NTRA C	ОМРАСТ	ACION		
MOLDE	ما	0,025	0,050	0,075	0,100	0,150	0.200	0,250	0,300	0,350	0,400
	0.0	9.0	17,0	23,0	28,0	33,0	39,0	42,5	46,0	48,0	51,0
1	0,06	2,184	4.072	5,488	6,668	7,848	9,264	10.09	10,916	11,388	12,096
	0,0	8,0	12,0	15.0	18,0	21,0	23,0	25.0	27,5	29.0	31.0

14,5

15,0

	CALCU	LADO	S	CORREG	IDOS
No. golpes	0,1	0,2	%СОМРАСТ.	0,1	0,2
56	6,67	9,26	97,6	9.47	8.77
28	4,31	5,49	95,2	6,12	5,20
14	3.25	3,60	85,6	4.61	3.41

PRUEBA DE COMPACTACION

FECHA

5 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LIMO ARCILLOSO COLOR CAFE

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

SUBRASANTE

MUESTRA No:

1 HUECO #22

PRUEBA: PROCTOR

COMPACTACION

7

DETERMINACION 1 2 3 4 5 6

5941 5892 Ww + Pmoide 5618 5772 P molde 4210 4210 4210 4210 WW 1408 1562 1731 1682 δw 1491 1654 1833 1781 δs 1221 1325 1412 1325

CONTENIDO DE HUMEDAD

No. CAPSULA 54 49 47 Ww + Wo 286,5 215,2 219,7 248,6 Ws + Wc 252,2 180,3 178,4 194,7 Ww 34,3 34,9 41,3 53,9 97,2 39,8 38,1 Wc 40,0 Ws 155.0 140.5 138,4 156,6 22,1 29,8 34,4 %W 24,8

Vmax = 1440 kg/m3 Wopt = 28.2%

Want - Y

PESO VOLUMETRICO CONTRA HUMEDAD 1600 1580 1560 1540 1520 1500 1480 1460 1440 PESO VOLUMETRICO (kg/m3) 1420 1400 1380 1360 1340 1320 1300 1280 1260 1240 1220 1200 1180 1160 1140 1120 1100 24 30 32 34 20 22 26 28 % HUMEDAD

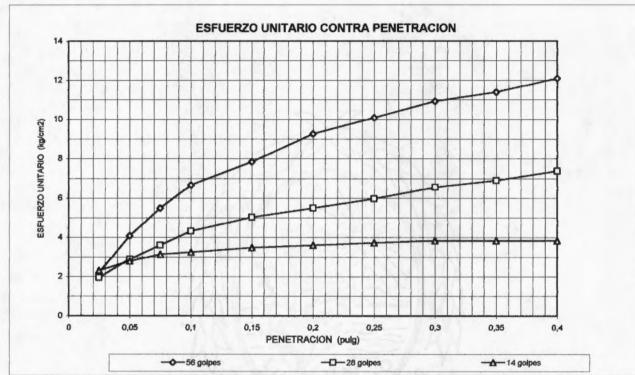
CO. IHEESANLS

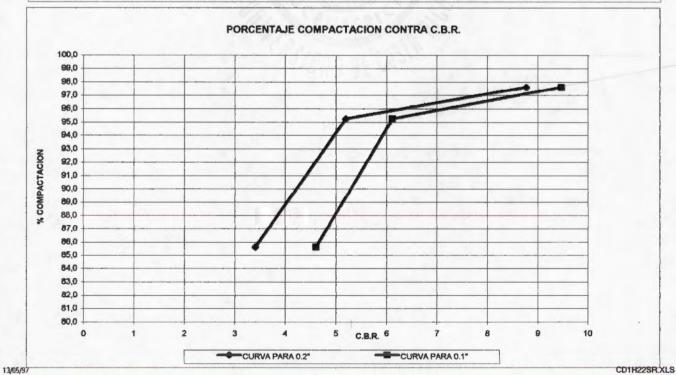
PRUEBA DE C.B.R.

FECHA

13 DE MAYO DE 1997

PROYECTO


MUNICIPALIDAD DE SAN JOSE


MUESTRA No:

DESCRIPCION DE MATERIAL: LIMO ARCILLOSO CAFE

LOCALIZACION:

HUECO: H-22 SUBRASANTE

LIMITES DE ATTERBERG

FECHA

14 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

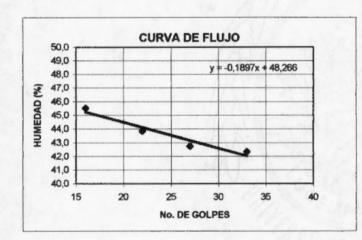
ARCILLA LIMOSA CAFE MEDIANA PLASTICIDAD

MUESTRA No:

D-1

LOCALIZACION:

CARACTERIZACION DE MUESTRA: SUBRASANTE


HUECO No

22

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	33	27	22	16		RECIPIENTE No.	36	37	53
Wc + Ww (gr.)	33,38	34,42	36,32	33,62		Wc+₩w (gr.)	12,28	12,07	14,7
Wc + Ws (gr.)	29,02	29,77	32,35	29,00		Wc + Ws (gr.)	11,72	11,52	14,05
Ww	4,358	4,649	3,975	4,616		Ww	0,557	0,546	0,651
Wc	18,73	18,89	23,28	18,86		Wc	9,354	9,094	11,18
Ws	10,29	10,88	9,065	10,14		Ws	2,369	2,429	2,868
% W	42,4	42,7	43,8	45,5		% W	23,5	22,5	22,7
						PROMEDIO			22,9

RESUMEN

LIMITE LIQUIDO 43,5 LIMITE PLASTICO 22,9 INDICE DE PLASTICIDAD 20,6

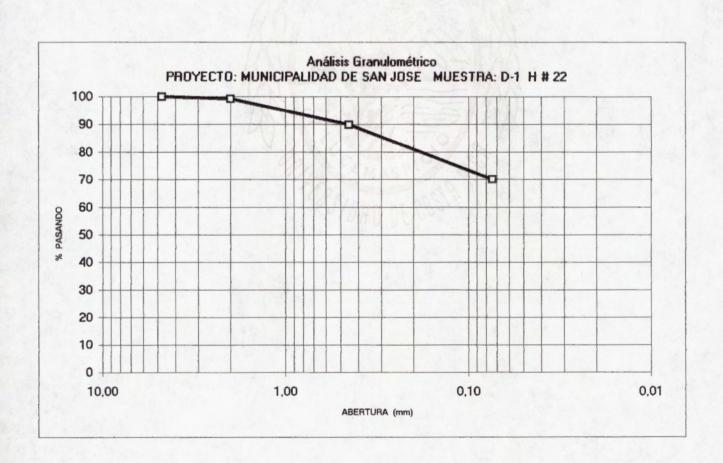
CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

8 DE MAYO DE 1197 **FECHA**

PROYECTO MUNICIPALIDAD DE SAN JOSE

MUESTRA: D-1 HUECO: # 22 MUESTRA: SUBRASANTE


UBICACION:

Análisis mecánico (lavado)

447,7 g. PESO INICIAL:

133,3 g. PESO FINAL:

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
#4	4,75	0,0	0,0	0,0	100,0
#10	2,00	3,5	0,8	0,8	99,2
#40	0,45	41,9	9,4	10,1	89,9
#200	0,074	88,2	19,7	29,8	70,2

ANEXO 3

PERFIL DE DEFLEXIONES

ZONA: SAN FRANCISCO 2 RIOS RUTA: D1

PESO DEL EJE : 8200 Kg PRESION DE LLANTAS: 5,6 Kg/cm²

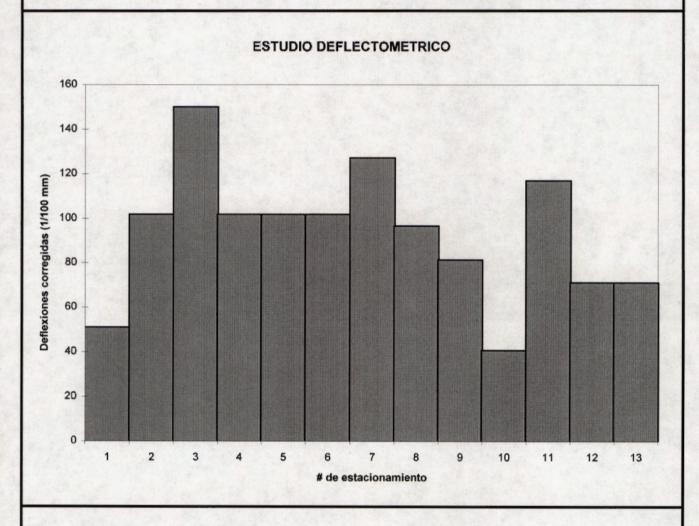
FECHA: 29-4-97 PRECISION DEL MICROMETRO : 0.02mm

LONGITUD: 660m MEDICIONES CADA 50 METROS

ESPESOR DE CAPA ASFALTICA (cm):

PUNTO	DEFLEXION	DEFLEXION	TEMPER
Nº	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	25	51	31
2	51	102	31
3	75	150	31
4	51	102	31
5	51	102	31
6	51	102	31
7	64	127	32
8	48	97	32
9	41	81	32
10	20	41	32
11	58	117	33
12	36	71	33
13	36	71	33

PROMEDIO (D):


93.2

DESV. EST. (σ):

30.1

RUTA: SAN FRANCISCO 2 RIOS TRAMO: D1

LONGITUD: 660m MEDICIONES CADA 50 METROS

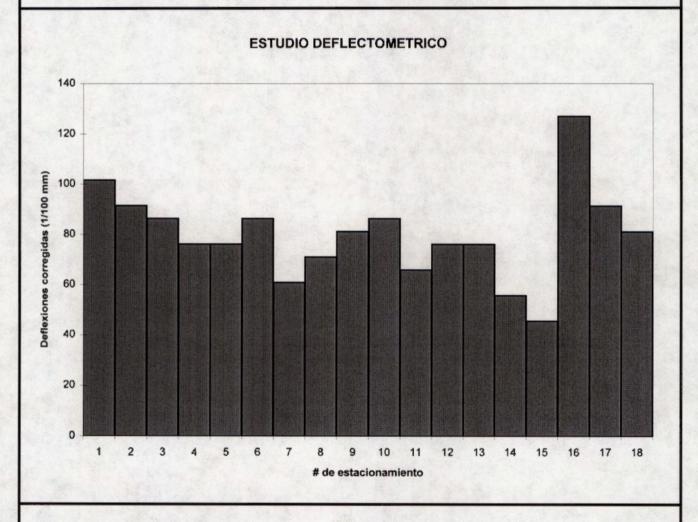
FECHA: 29-4-97 PROMEDIO (D): 93.2 DESV. EST. (o): 30.1 MIN 41 D - 20 32.97 D + 1.282_{\sigma} 131.80 $D + 2\sigma$ 153.43 MAX 150

ZONA: SAN FRANCISCO 2 RIOS RUTA: D2

PESO DEL EJE : 8200 Kg PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA: 29-4-97 PRECISION DEL MICROMETRO : 0.02mm

LONGITUD: 900m MEDICIONES CADA 50 METROS


ESPESOR DE CAPA ASFALTICA (cm):

PUNTO	DEFLEXION	DEFLEXION	TEMPER
N ^o	0.01mm	mm*10 ⁻²	PAVIM (°C
1	51	102	33
2	46	91	33
3	43	86	33
4	38	76	33
5	38	76	33
6	43	86	33
7	30	61	33
8	36	71	33
9	41	81	33
10	43	86	33
11	33	66	33
12	38	76	33
13	38	76	33
14	28	56	32
15	23	46	32
16	64	127	32
17	46	91	32
18	41	81	32

PROMEDIO (D): 79.9 DESV. EST. (σ): 18.0

RUTA: SAN FRANCISCO DE DOS RIOS TRAMO: D2

LONGITUD: 900m MEDICIONES CADA 50 METROS

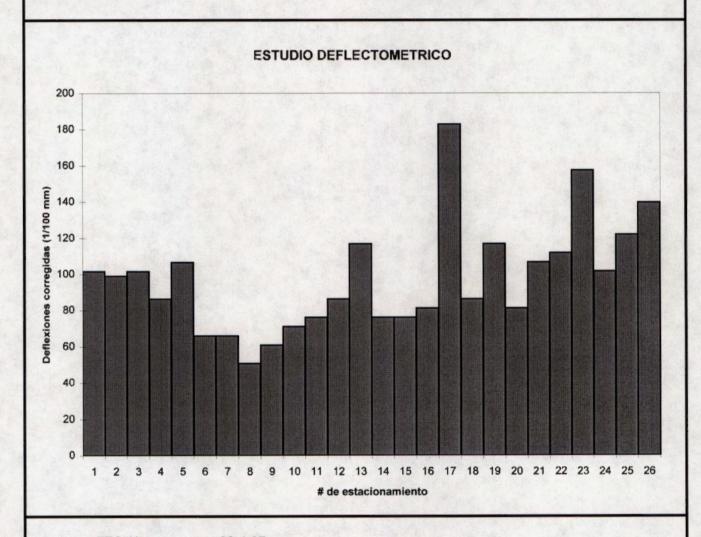
FECHA: 29-4-97 PROMEDIO (D): 79.9 DESV. EST. (o): 18.0 MIN 46 D - 20 43.85 $D + 1.282\sigma$ 102.95 $D + 2\sigma$ 115.88 MAX 127

ZONA: SAN FRANCISCO DE DOS RIOS RUTA: D3

PESO DEL EJE : 8200 Kg PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA: 29-4-97 PRECISION DEL MICROMETRO : 0.02mm

LONGITUD: 1300m MEDICIONES CADA 50 METROS

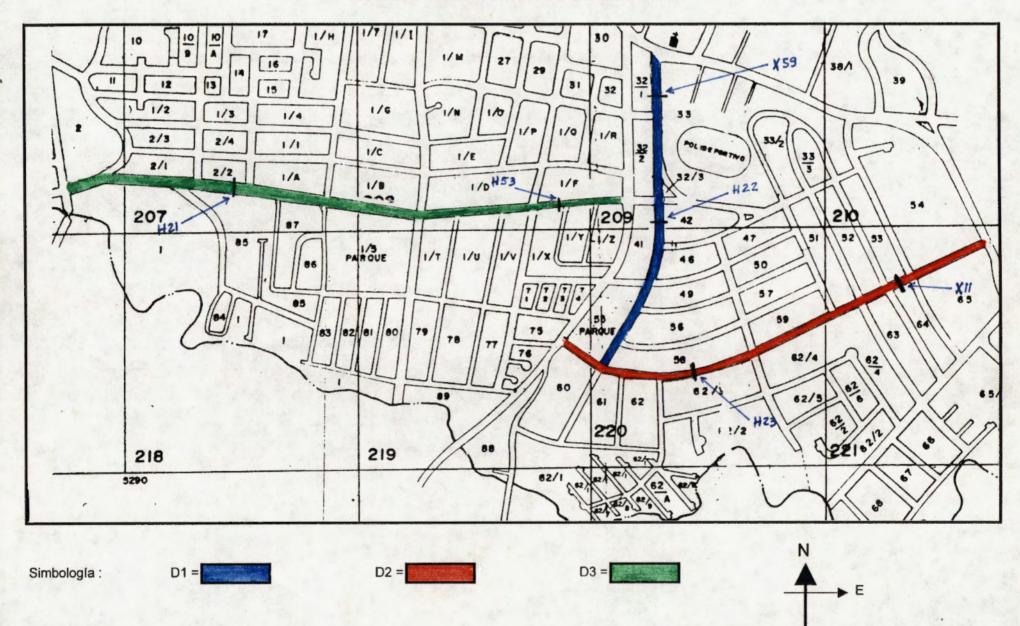

ESPESOR DE CAPA ASFALTICA (cm):

PUNTO	DEFLEXION	DEFLEXION	TEMPER
N ⁰	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	51	102	33
2	50	99	33
3	51	102	33
4	43	86	33
5	53	107	33
6	33	66	33
7	33	66	33
8	25	51	33
9	30	61	34
10	36	71	34
11	38	76	34
12	43	86	34
13	58	117	34
14	38	76	34
15	38	76	35
16	41	81	35
17	91	183	35
18	43	86	35
19	58	117	35
20	41	81	35
21	53	107	35
22	56	112	36
23	79	157	36
24	51	102	36
25	61	122	36
26	70	140	36

PROMEDIO (D): 97.3 DESV. EST. (σ): 30.3

RUTA: SAN FRANCISCO DE DOS RIOS TRAMO: D3

LONGITUD: 1300m MEDICIONES CADA 50 METROS


FECHA: 29-4-97 97.3 PROMEDIO (D): 30.3 DESV. EST. (σ): MIN 51 D - 20 36.79 $D + 1.282\sigma$ 136.09 $D + 2\sigma$ 157.82 MAX 183

ANEXO 4

PLANO DE UBICACION DE RUTAS Y SONDEOS REALIZADOS

MAPA DE UBICACION DE LAS RUTAS Y SONDEOS

DISTRITO: SAN FRANCISCO DE DOS RIOS

