MUNICIPALIDAD DE SAN JOSE

PROYECTO DE REHABILITACION DE VIAS URBANAS

INFORME DE AVANCE Nº 1

DISTRITO LA URUCA

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

JULIO 1997

MUNICIPALIDAD DE SAN JOSE

PROYECTO DE REHABILITACION DE VIAS URBANAS

INFORME DE AVANCE Nº 1

DISTRITO LA URUCA

UNIVERSIDAD DE COSTA RICA
ESCUELA DE INGENIERIA CIVIL
LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

JULIO 1997

PROYECTO DE REHABILITACION DE VIAS URBANAS

INFORME DE AVANCE NO 1

DISTRITO LA URUCA

Indice de Contenido

1- Objetivo y alcance	Página 1
2- Estudios de tránsito y predicción de cargas por eje	1
3- Análisis deflectométrico	2
4- Estudio de laboratorio	3
5- Análisis estructural del pavimento	3
5.1 Pavimento flexible	3
5.2 Pavimento rígido	5
5.3 Diseño propuesto	9
6- Cuadro de cantidades	20
7- Conclusiones y recomendaciones	27
8- Especificaciones especiales	29
Anexo 1 : Estimación de cargas por eje en las estaciones de conteo	35
Anexo 2 : Ensayos de laboratorio y secciones típicas del pavimento existente	40
Anexo 3 : Perfil de deflexiones	87
Anexo 4 : Plano de ubicación de rutas	110

1

PROYECTO DE REHABILITACION DE VIAS URBANAS INFORME DE AVANCE Nº 1 DISTRITO LA URUCA

1. OBJETIVO Y ALCANCE

Realizar un estudio de las condiciones actuales de los pavimentos, para readecuarlos estructuralmente a las condiciones futuras del tránsito.

Este informe se circunscribe a 9 rutas del distrito La Uruca, ubicadas según se detalla en los planos anexos, y se identifican de la siguiente forma:

F1 : Del bajo de Los Ledezma a Canal 6 (esta ruta se dividió en dos tramos : Bajo Los Ledezma-SENARE y SENARE - Canal 6).

F2: Canal 6 al INA.

F3 : Central de Mangueras (radial La Uruca) a intersección con la ruta al hotel San José Palacio.

F4 : Entrada al hotel San José Palacio (autopista General Cañas) a intersección con F3.

F5 : Hotel Irazú a radial La Uruca.

F6: Radial La Uruca a La Peregrina.

F7: Centro de Llantas L y S (radial La Uruca) a salir a radial La Uruca (400 m al este).

F8 : Primera paralela al sur-oeste de la autopista General Cañas, a la alutra del puente Juan Pablo II.

F9 : Segunda paralela a la General Cañas, con la misma ubicación de la ruta anterior.

2. ESTUDIOS DE TRANSITO Y PREDICCION DE CARGAS POR EJE

Con base en los conteos de tránsito y composición vehicular, suministrados por la Municipalidad de San José, se hicieron las proyecciones de flujo vehicular hasta el año 2010.

De acuerdo con esta información se determinó la cantidad de solicitaciones de carga, en términos de ejes equivalentes de 8200 kg, para el período de diseño antes indicado. En el Anexo 1 se muestran las tablas resumen de este análisis, para cada una de las estaciones de conteo, y a continuación se presenta el rango probable de solicitaciones de carga, estimado para cada una de las vías contempladas en el presente estudio.

Tabla 2.1 Rango probable de ejes equivalentes.

RUTA	EJES EQUIVALENTES * 10 ⁵ (rango probable)
F1	1.21 - 1.50
F2	6.93 - 7.50
F3	3.50 - 4.50
F4	3.50 - 4.50
F5	0.50
	3.50 - 4.40
F6	3.32 - 4.50
10	3.32 - 4.50
F7	3.50 - 4.50
	3.55 1.00
F8	2.1 - 2.5
F9	2.1 - 2.5

En las rutas que no tenían estaciones de conteo, se estimó el volumen de tránsito con base en la información obtenida en la rutas encuestadas que presentan condiciones similares respecto al flujo vehicular.

3. ANALISIS DEFLECTOMETRICO

Se realizó un estudio de deflexiones por medio de la viga Benkelman, con una carga de 8200 kg en el eje trasero y una presión de inflado de 5.6 kg/cm².

En virtud de la premura de tiempo con que se requiere ejecutar este estudio, se hizo una medición de deflexiones en la totalidad del proyecto, en el mes de abril. Posteriormente se repitió el ensayo en algunas de las vías, en la segunda mitad del mes de julio, para readecuar el comportamiento elástico del pavimento a las condiciones de humedad de los materiales en invierno.

En el Anexo 3 se presenta el perfil de deflexiones, en cada una de las rutas, así como su dispersión estadística.

En general los valores de deflexión obtenidos son muy altos, lo que denota insuficiencia estructural del pavimento. Especialmente crítica es la situación de las rutas F2, F8 y F9, donde se obtuvieron los siguientes valores de deflexión en verano:

RUTA	DEFLEX. MEDIA (mm*10 ⁻²)	Drr (mm*10 ⁻²)
F2	139	199
F8	196	323
F9	258	365

4. ESTUDIO DE LABORATORIO

Como parte del diagnóstico, se hizo un estudio de laboratorio con base en sondeos a cielo abierto y se realizaron análisis del perfil del pavimento y de valoración visual de los materiales constitutivos, así como de sus características fisicomecánicas. En general se evaluaron los siguientes aspectos:

- Espesor de capas.
- Evaluación visual de los materiales constitutivos.
- Apreciación visual de la condición de las capas en el sitio de sondeo.
- Capacidad de soporte de la sub-rasante en sitio.
- Densidad en sitio.

- Capacidad de soporte en laboratorio de materiales de sub-rasante, sub-base y base.
- Granulometría, plasticidad y clasificación de materiales (sub-rasante, sub-base y base).

En Anexo 2 se presenta el detalle de los resultados de los ensayos de laboratorio y el perfil de la estructura del pavimento en cada uno de los sondeos realizados.

5. ANALISIS ESTRUCTURAL DEL PAVIMENTO

5.1 Pavimento Flexible

Con base en la información de campo y de laboratorio, se definieron las secciones típicas (probables) de cada una de las vías, y las características fundamentales de los materiales constitutivos.

Se diseñó la reconstrucción de los pavimentos, aplicando en primera instancia el modelo AASHTO, para lo cual se definieron para cada una de las rutas los siguientes parámetros :

- Rango probable de ejes equivalentes.
- Capacidad de soporte de la sub-rasante.
- Desviación estándar global.
- Pérdida en el índice de servicio (psi).
- Valor del índice de servicio al final de la vida útil del pavimento.

Con base en dichos parámetros de determinó la capacidad estructural requerida en cada una de los rutas, en términos del número estructural SN (AASHTO). En la Tabla 5.1 se resumen los resultados de este análisis.

Tabla 5.1 : Cálculo del número estructural SN (AASHTO)

PAVIMENTO FLEXIBLE

RUTAS: URUCA

RUTA	W ₁₈	LOG ₁₀ (W ₁₈)	Z _R	So	SN	SN+1	Δ PSI	M _R	LOG ₁₀ (W ₁₈)
	*								
F1	1,21E+06	6,08278537	-1,29	0,35	3,3413993	4,3413993	2,25	7000	6,082808198
F2	6,93E+06	6,840733235	-1,29	0,35	4,3989844	5,3989844	2,25	6500	6,840738908
F3	3,50E+06	6,544068044	-1,29	0,35	3,9969858	4,9969858	2,25	6500	6,544150492
F4	3,50E+06	6,544068044	-1,29	0,35	4,1035389	5,1035389	2,25	6000	6,54416642
F5	3,50E+06	6,544068168	-1,29	0,35	4,103539	5,103539	2,25	6000	6,54416655
F6	3,32E+06	6,521138084	-1,29	0,35	3,8707908	4,8707908	2,25	7000	6,521190385
F7	3,50E+06	6,544068044	-1,29	0,35	3,9974383	4,9974383	2,25	6500	6,544496385
F8	1,20E+06	6,079181246	-1,29	0,35	4,2087893	5,2087893	2,25	3500	6,079273758
F9	1,20E+06	6,079181246	-1,29	0,35	4,2086899	5,2086899	2,25	3500	6,079200604
			•						1
F1	1,50E+06	6,176091259	-1,29	0,35	3,4489669	4,4489669	2,25	7000	6,176098234
F2	7,50E+06	6,875061263	-1,29	0,35	4,4463586	5,4463586	2,25	6500	6,874377188
F3	4,50E+06	6,653212514	-1,29	0,35	4,1414161	5,1414161	2,25	6500	6,653117075
F4	4,50E+06	6,653212514	-1,29	0,35	4,2497189	5,2497189	2,25	6000	6,652364305
F5	4,50E+06	6,653212514	-1,29	0,35	4,2497189	5,2497189	2,25	6000	6,652364305
F6	4,50E+06	6,653212514	-1,29	0,35	4,0421863	5,0421863	2,25	7000	6,653228888
F7	4,50E+06	6,653212514	-1,29	0,35	4,1416616	5,1416616	2,25	6500	6,653299862
F8	1,20E+06	6,079181246	-1,29	0,35	4,2087893	5,2087893	2,25	3500	6,079273758
F9	1,20E+06	6,079181246	-1,29	0,35	4,2086899	5,2086899	2,25	3500	6,079200604

W₁₈ rango de ejes equivalentes

Z_R : confiabilidad

S_o : desviación estándar global

SN : número estructural PSI : índice de servicio

M_R : módulo resilente de la sub-rasante

Posteriormente se hizo un análisis de esfuerzos y deformaciones, por medio de un modelo multicapa elástico, con el propósito de determinar la capacidad a fatiga del pavimento, por deformaciones unitarias de tensión en la capa asfáltica y por deformaciones verticales, tipo rodera, en la sub-rasante. En todos los casos se obtuvo que la capacidad estructural del pavimento a fatiga, supera el número de repeticiones de carga previstos para el período de diseño.

En la Tabla 5.2, se resumen los resultados de este análisis y la simbología utilizada es la siguiente:

E: módulo resilente (kg/cm²).

U_z: desplazamiento vertical total del pavimento (mm*10⁻²).

Et (h): deformación unitaria de tensión, en la capa asfáltica a la profundidad (h).

E_{c (h)}: deformación unitaria de compresión, en la sub-rasante a la profundidad (h).

NF 1: Número de repeticiones de carga admisibles en la primera capa asfáltica.

NF 2: Número de repeticiones de carga admisibles en la sub-rasante.

5.2 Pavimento Rígido

Para el diseño del pavimento rígido se utilizó el modelo AASHTO, teniendo en consideración los siguientes parámetros :

- Rango probable de solicitaciones de carga de 8*10⁶ ejes equivalentes de 8200 kg.
- Módulo resilente de sub-rasante : 425 kg/cm².
- -Desviación estándar global : 0.30.
- Confiabilidad: 90%.
- Módulo de rotura del concreto : 45 kg/cm².
- Pérdida en el índice de servicio : 2.2.
- Valor final del índice de servicio : 2.5.
- Factor de transmisión de carga: 3.2.
- Coeficiente de drenaje : 1.0.

Con estos valores se hizo un análisis de sensibilidad, variando las solicitaciones de carga y el módulo de rotura del concreto.

En las Tabla 5.3 se resume el resultado de este análisis.

TABLA 5.2 : Análisis de fatiga

RUTA	E ₁	E ₁	U _{z : Z=0}	U _{z : Z=0}	e _{t = (3,54)}	e _{t =}	e _{c = (17,325)}	NF 1	NF ₂	ND
	(Psi)	(kg/cm ²)	(pulg)	(mm*10 ⁻²)						
(IbiC.)										
F1	125000	8803	0,0243	61,722	7,11E-05	NA	3,43E-04	>1E+08	NA	4,43E+06
F1	125000	8803	0,0272	69,088	4,21E-05	NA	4,54E-04	>1E+08	NA	1,26E+06
F1	325000	22887	0,0215	54,610	1,81E-05	NA	2,82E-04	>1E+08	NA	1,07E+07
F1	325000	22887	0,024	60,960	3,82E-05	NA	3,77E-04	5,41E+08	NA	2,90E+06
RUTA	E ₁	E ₁	U _{z : Z=0}	U _{z : Z=0}	e _{t = (3,35)}	e _{t = (6,89)}	e _{c = (19,885)}	NF ₁	NF 2	ND
	(Psi)	(kg/cm ²)	(pulg)	(mm*10 ⁻²)						
(RESID										
F2	125000	8803	0,0225	57,150	4,61E-05	1,29E-05	2,47E-04	>1E+08	4,20E+11	1,93E+07
F2	125000	8803	0,0242	61,468	3,66E-05	3,54E-05	3,20E-04	1,41E+09	1,52E+10	6,05E+06
F2	325000	22887	0,0191	48,514	2,02E-05	1,84E-05	1,98E-04	4,40E+09	5,77E+10	5,19E+07
F2	325000	22887	0,0207	52,578	2,05E-05	5,96E-05	2,59E-04	4,20E+09	1,21E+09	1,56E+07
RUTA	E ₁	E₁	U _{z : Z=0}	U _{z : Z=0}	e _{t = (4,72)}	e _{t =}	e _{c = (18,895)}	NF ₁	NF ₂	ND
	(Psi)	(kg/cm ²)	(pulg)	(mm*10 ⁻²)						
				,						
F3	125000	8803	0,0226	57,404	3,57E-05	NA	2,64E-04	>1E+08	NA	1,43E+07
F3	125000	8803	0,025	63,500	1,14E-05	NA	3,55E-04	6,54E+10	NA	3,80E+06
F3	325000	22887	0,0195	49,530	1,03E-05	NA	2,16E-04	4,04E+10	NA	3,51E+07
F3	325000	22887	0,0216	54,864	5,63E-05	NA	2,92E-04	1,51E+08	NA	9,11E+06
RUTA	E₁	E ₁	U _{z : Z=0}	U _{z : Z=0}	e _{t = (2,95)}	e _{t = (6,10)}	e _{c = (19,095)}	NF 1	NF ₂	ND
	(Psi)	(kg/cm ²)	(pulg)	(mm*10 ⁻²)						
F4	125000	8803	0,0229	58,166	2,67E-05	2,00E-05	2,67E-04	>1E+08	9,92E+10	1,36E+07
F4	125000	8803	0,0248	62,992	1,46E-05	3,06E-05	3,48E-04	2,90E+10	2,45E+10	4,15E+06
					,		-,		2,102.10	
F4	325000		0,0196	49.784	9.45E-06	1.60E-05	2.15E-04	5.37F+10	9 14F+10	3 59F+07 I
F4	325000 325000	22887 22887	0,0196 0,0213	49,784 54,102	9,45E-06 9,18E-06	1,60E-05 6,05E-05	2,15E-04 2,84E-04	5,37E+10 5.90E+10	9,14E+10 1.15E+09	3,59E+07 1.03E+07
		22887	0,0213	54,102	9,18E-06	6,05E-05	2,84E-04	5,90E+10	1,15E+09	3,59E+07 1,03E+07 ND
F4	325000	22887 22887								1,03E+07
F4	325000 E ₁	22887 22887 E ₁	0,0213 U _{z:Z=0}	54,102 U _{z:Z=0}	9,18E-06	6,05E-05	2,84E-04	5,90E+10	1,15E+09	1,03E+07
F4 RUTA	325000 E ₁	22887 22887 E ₁	0,0213 U _{z: Z=0} (pulg)	54,102 U _{z:Z=0} (mm*10 ⁻²)	9,18E-06 e _{t = (3,35)}	6,05E-05 e _{t = (7,29)}	2,84E-04 e _{c = (19,115)}	5,90E+10 NF ₁	1,15E+09 NF ₂	1,03E+07 ND
F4 RUTA (NORTE)	325000 E ₁ (Psi)	22887 22887 E ₁ (kg/cm ²)	0,0213 U _{z:z=0} (pulg) 0,0245	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230	9,18E-06 e _{t=(3,35)} 3,19E-05	6,05E-05 e _{t = (7,29)} 8,30E-06	2,84E-04 e _{c = (19,115)} 3,12E-04	5,90E+10 NF ₁ >1E+08	1,15E+09 NF ₂ 1,79E+12	1,03E+07 ND 6,77E+06
F4 RUTA (NORTE) F5	325000 E ₁ (Psi) 125000	22887 22887 E ₁ (kg/cm ²) 8803 8803	0,0213 U _{z:Z=0} (pulg) 0,0245 0,0261	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230 66,294	9,18E-06 e _{t=(3,35)} 3,19E-05 2,62E-05	6,05E-05 e _{t = (7,29)} 8,30E-06 4,58E-05	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04	5,90E+10 NF ₁ >1E+08 4,23E+09	1,15E+09 NF ₂ 1,79E+12 6,49E+09	1,03E+07 ND 6,77E+06 2,67E+06
F4 RUTA (NORTE) F5 F5	325000 E ₁ (Psi) 125000 125000	22887 22887 E ₁ (kg/cm ²)	0,0213 U _{z:z=0} (pulg) 0,0245	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230	9,18E-06 e _{t = (3,35)} 3,19E-05 2,62E-05 1,58E-05	6,05E-05 e _{t = (7,29)} 8,30E-06 4,58E-05 2,61E-05	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04 2,40E-04	5,90E+10 NF ₁ >1E+08 4,23E+09 9,89E+09	1,15E+09 NF ₂ 1,79E+12 6,49E+09 1,83E+10	1,03E+07 ND 6,77E+06 2,67E+06 2,19E+07
F4 RUTA (NORTE) F5 F5 F5	325000 E ₁ (Psi) 125000 125000 325000	22887 22887 E ₁ (kg/cm ²) 8803 8803 22887	0,0213 U _{z:Z=0} (pulg) 0,0245 0,0261 0,0205 0,0221	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230 66,294 52,070 56,134	9,18E-06 e _{t=(3,35)} 3,19E-05 2,62E-05 1,58E-05 1,71E-05	6,05E-05 e _{t = (7,29)} 8,30E-06 4,58E-05 2,61E-05 7,43E-05	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04 2,40E-04 3,02E-04	5,90E+10 NF ₁ >1E+08 4,23E+09 9,89E+09 7,62E+09	1,15E+09 NF ₂ 1,79E+12 6,49E+09 1,83E+10 5,84E+08	1,03E+07 ND 6,77E+06 2,67E+06 2,19E+07
F4 RUTA (NORTE) F5 F5 F5 F5	325000 E ₁ (Psi) 125000 125000 325000 325000	22887 22887 E ₁ (kg/cm ²) 8803 8803 22887 22887	0,0213 U _{z:Z=0} (pulg) 0,0245 0,0261 0,0205	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230 66,294 52,070	9,18E-06 e _{t = (3,35)} 3,19E-05 2,62E-05 1,58E-05	6,05E-05 e _{t = (7,29)} 8,30E-06 4,58E-05 2,61E-05	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04 2,40E-04	5,90E+10 NF ₁ >1E+08 4,23E+09 9,89E+09	1,15E+09 NF ₂ 1,79E+12 6,49E+09 1,83E+10	1,03E+07 ND 6,77E+06 2,67E+06 2,19E+07 7,84E+06
F4 RUTA (NORTE) F5 F5 F5 F5	325000 E ₁ (Psi) 125000 125000 325000 325000 E ₁	22887 22887 E ₁ (kg/cm ²) 8803 8803 22887 22887	0,0213 U _{z:Z=0} (pulg) 0,0245 0,0261 0,0205 0,0221 U _{z:Z=0}	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230 66,294 52,070 56,134 U _{z:Z=0}	9,18E-06 e _{t=(3,35)} 3,19E-05 2,62E-05 1,58E-05 1,71E-05	6,05E-05 e _{t = (7,29)} 8,30E-06 4,58E-05 2,61E-05 7,43E-05	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04 2,40E-04 3,02E-04	5,90E+10 NF ₁ >1E+08 4,23E+09 9,89E+09 7,62E+09	1,15E+09 NF ₂ 1,79E+12 6,49E+09 1,83E+10 5,84E+08	1,03E+07 ND 6,77E+06 2,67E+06 2,19E+07 7,84E+06
F4 RUTA (NORTE) F5 F5 F5 RUTA	325000 E ₁ (Psi) 125000 125000 325000 325000 E ₁	22887 22887 E ₁ (kg/cm ²) 8803 8803 22887 22887	0,0213 U _{z:Z=0} (pulg) 0,0245 0,0261 0,0205 0,0221 U _{z:Z=0}	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230 66,294 52,070 56,134 U _{z:Z=0} (mm*10 ⁻²)	9,18E-06 et = (3,35) 3,19E-05 2,62E-05 1,58E-05 1,71E-05 et = (3,35)	6,05E-05 et = (7,29) 8,30E-06 4,58E-05 2,61E-05 7,43E-05 et = (7,29)	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04 2,40E-04 3,02E-04 e _{c = (19,895)}	5,90E+10 NF ₁ >1E+08 4,23E+09 9,89E+09 7,62E+09 NF ₁	1,15E+09 NF ₂ 1,79E+12 6,49E+09 1,83E+10 5,84E+08 NF ₂	1,03E+07 ND 6,77E+06 2,67E+06 2,19E+07 7,84E+06 ND
F4 RUTA (NORTE) F5 F5 F5 RUTA (SUR)	325000 E ₁ (Psi) 125000 125000 325000 325000 E ₁ (Psi)	22887 22887 E ₁ (kg/cm ²) 8803 8803 22887 22887 E ₁ (kg/cm ²)	0,0213 U _{z:Z=0} (pulg) 0,0245 0,0261 0,0205 0,0221 U _{z:Z=0} (pulg)	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230 66,294 52,070 56,134 U _{z:Z=0}	9,18E-06 e _{t=(3,35)} 3,19E-05 2,62E-05 1,58E-05 1,71E-05	6,05E-05 e _{t = (7,29)} 8,30E-06 4,58E-05 2,61E-05 7,43E-05	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04 2,40E-04 3,02E-04 e _{c = (19,895)} 3,02E-04	5,90E+10 NF 1 >1E+08 4,23E+09 9,89E+09 7,62E+09 NF 1 >1E+08	1,15E+09 NF ₂ 1,79E+12 6,49E+09 1,83E+10 5,84E+08 NF ₂	1,03E+07 ND 6,77E+06 2,67E+06 2,19E+07 7,84E+06 ND
F4 RUTA (NORTE) F5 F5 F5 RUTA (SUR) F5	325000 E ₁ (Psi) 125000 125000 325000 325000 E ₁ (Psi)	22887 22887 E ₁ (kg/cm ²) 8803 8803 22887 22887 E ₁ (kg/cm ²)	0,0213 U _{z:Z=0} (pulg) 0,0245 0,0261 0,0205 0,0221 U _{z:Z=0} (pulg)	54,102 U _{z:Z=0} (mm*10 ⁻²) 62,230 66,294 52,070 56,134 U _{z:Z=0} (mm*10 ⁻²) 61,976	9,18E-06 et=(3,35) 3,19E-05 2,62E-05 1,58E-05 1,71E-05 et=(3,35) 3,22E-05	6,05E-05 et = (7,29) 8,30E-06 4,58E-05 2,61E-05 7,43E-05 et = (7,29) 8,28E-06	2,84E-04 e _{c = (19,115)} 3,12E-04 3,84E-04 2,40E-04 3,02E-04 e _{c = (19,895)}	5,90E+10 NF ₁ >1E+08 4,23E+09 9,89E+09 7,62E+09 NF ₁	1,15E+09 NF ₂ 1,79E+12 6,49E+09 1,83E+10 5,84E+08 NF ₂ 1,81E+12 6,54E+09	1,03E+07 ND 6,77E+06 2,67E+06 2,19E+07 7,84E+06 ND

TABLA 5.2 : Análisis de fatiga (continuación)

RUTA	E₁	E ₁	$U_{z:Z=0}$	U _{z : Z=0}	e _{t = (4,33)}	e _{t =}	e _{c = (19,305)}	NF 1	NF ₂	ND
	(Psi)	(kg/cm ²)	(pulg)	(mm*10 ⁻²)						
(INDUST)										
F6	125000	8803	0,023	58,420	4,49E-05	NA	2,76E-04	>1E+08	NA	1,17E+07
F6	125000	8803	0,0255	64,770	9,43E-07	NA	3,65E-04	2,39E+14	NA	3,36E+06
F6	325000	22887	0,02	50,800	5,37E-06	NA	2,26E-04	3,45E+11	NA	2,87E+07
F6	325000	22887	0,0222	56,388	5,28E-05	NA	3,01E-04	1,86E+08	NA	7,95E+06
RUTA	E ₁	E ₁	U _{z : Z=0}	U _{z : Z=0}	e _{t = (3,54)}	e _{t =}	e _{c = (16,925)}	NF 1	NF ₂	ND
005.00	(Psi)	(kg/cm ²)	(pulg)	(mm*10 ⁻²)						
(RESID)										
F6	125000	8803	0,0249	63,246	7,48E-05	NA	3,65E-04	>1E+08	NA	3,36E+06
F6	125000	8803	0,0278	70,612	4,42E-05	NA	4,80E-04	>1E+08	NA	9,84E+05
F6	325000	22887	0,0219	55,626	1,87E-05	NA	3,00E-04	>1E+08	NA	8,07E+06
F6	325000	22887	0,0245	62,230	3,88E-05	NA	3,98E-04	5,14E+08	NA	2,28E+06
RUTA	E₁		11	11	_			NIF	AIF	NIB
	<u>-1</u>	E ₁	$U_{z:Z=0}$	U _{z : Z=0}	$e_{t = (3,15)}$	$e_{t = (6,50)}$	e _{c = (18,315)}	NF ₁	NF ₂	ND
KOTA	(Psi)	(kg/cm ²)	O _{z : Z=0} (pulg)	(mm*10 ⁻²)	e _{t = (3,15)}	e _{t = (6,50)}	e _c = (18,315)	NF ₁	NF ₂	ND
OOF	(Psi)	(kg/cm ²)			e _t = (3,15)	e _t = (6,50)	e _c = (18,315)	NF ₁	NF ₂	ND
F7	(Psi) 125000	(kg/cm ²) 8803			e _{t = (3,15)} 2,01E-05	e _{t = (6,50)}	3,27E-04	>1E+08	NF ₂	5,49E+06
F7 F7	(Psi) 125000 125000	(kg/cm²) 8803 8803	(pulg) 0,0246 0,0265	(mm*10 ⁻²) 62,484 67,310						
F7 F7 F7	(Psi) 125000 125000 325000	(kg/cm²) 8803 8803 22887	0,0246 0,0265 0,0208	(mm*10 ⁻²) 62,484 67,310 52,832	2,01E-05	1,72E-05	3,27E-04	>1E+08	1,63E+11	5,49E+06
F7 F7	(Psi) 125000 125000 325000 325000	(kg/cm²) 8803 8803	(pulg) 0,0246 0,0265	(mm*10 ⁻²) 62,484 67,310	2,01E-05 1,34E-05	1,72E-05 3,90E-05	3,27E-04 4,09E-04	>1E+08 3,84E+10	1,63E+11 1,10E+10	5,49E+06 2,02E+06
F7 F7 F7	(Psi) 125000 125000 325000	(kg/cm²) 8803 8803 22887	0,0246 0,0265 0,0208	(mm*10 ⁻²) 62,484 67,310 52,832	2,01E-05 1,34E-05 9,36E-06	1,72E-05 3,90E-05 2,18E-05	3,27E-04 4,09E-04 2,55E-04	>1E+08 3,84E+10 5,54E+10	1,63E+11 1,10E+10 3,30E+10	5,49E+06 2,02E+06 1,67E+07
F7 F7 F7 F7	(Psi) 125000 125000 325000 325000	(kg/cm²) 8803 8803 22887 22887	0,0246 0,0265 0,0208 0,0226	(mm*10 ⁻²) 62,484 67,310 52,832 57,404	2,01E-05 1,34E-05 9,36E-06 1,16E-05	1,72E-05 3,90E-05 2,18E-05 7,23E-05	3,27E-04 4,09E-04 2,55E-04 3,26E-04	>1E+08 3,84E+10 5,54E+10 2,73E+10	1,63E+11 1,10E+10 3,30E+10 6,39E+08	5,49E+06 2,02E+06 1,67E+07 5,56E+06
F7 F7 F7 F7 RUTA	(Psi) 125000 125000 325000 325000 E ₁ (Psi)	(kg/cm ²) 8803 8803 22887 22887 E ₁ (kg/cm ²)	(pulg) 0,0246 0,0265 0,0208 0,0226 U _{z:z=0} (pulg)	(mm*10 ⁻²) 62,484 67,310 52,832 57,404 U _{z: Z=0} (mm*10 ⁻²)	2,01E-05 1,34E-05 9,36E-06 1,16E-05	1,72E-05 3,90E-05 2,18E-05 7,23E-05	3,27E-04 4,09E-04 2,55E-04 3,26E-04	>1E+08 3,84E+10 5,54E+10 2,73E+10	1,63E+11 1,10E+10 3,30E+10 6,39E+08	5,49E+06 2,02E+06 1,67E+07 5,56E+06
F8 - F9	(Psi) 125000 125000 325000 325000 E ₁ (Psi) 125000	(kg/cm²) 8803 8803 22887 22887 E ₁ (kg/cm²)	(pulg) 0,0246 0,0265 0,0208 0,0226 U _{z:Z=0} (pulg) 0,0251	(mm*10 ⁻²) 62,484 67,310 52,832 57,404 U _{z:Z=0} (mm*10 ⁻²) 63,754	2,01E-05 1,34E-05 9,36E-06 1,16E-05 e _{t=(3,15)}	1,72E-05 3,90E-05 2,18E-05 7,23E-05 e _{t=(6,50)}	3,27E-04 4,09E-04 2,55E-04 3,26E-04	>1E+08 3,84E+10 5,54E+10 2,73E+10	1,63E+11 1,10E+10 3,30E+10 6,39E+08	5,49E+06 2,02E+06 1,67E+07 5,56E+06
F7 F7 F7 F7 RUTA F8 - F9 F8 - F9	(Psi) 125000 125000 325000 325000 E ₁ (Psi) 125000 125000	(kg/cm²) 8803 8803 22887 22887 E ₁ (kg/cm²) 8803 8803	(pulg) 0,0246 0,0265 0,0208 0,0226 U _{z:Z=0} (pulg) 0,0251 0,0269	(mm*10 ⁻²) 62,484 67,310 52,832 57,404 U _{z:Z=0} (mm*10 ⁻²) 63,754 68,326	2,01E-05 1,34E-05 9,36E-06 1,16E-05 e _{t=(3,15)} 1,62E-05 1,06E-05	1,72E-05 3,90E-05 2,18E-05 7,23E-05 e _{t=(6,50)} 1,65E-05 4,15E-05	3,27E-04 4,09E-04 2,55E-04 3,26E-04 e _{c = (18,325)}	>1E+08 3,84E+10 5,54E+10 2,73E+10 NF ₁	1,63E+11 1,10E+10 3,30E+10 6,39E+08 NF ₂	5,49E+06 2,02E+06 1,67E+07 5,56E+06 ND
F8 - F9	(Psi) 125000 125000 325000 325000 E ₁ (Psi) 125000	(kg/cm²) 8803 8803 22887 22887 E ₁ (kg/cm²)	(pulg) 0,0246 0,0265 0,0208 0,0226 U _{z:Z=0} (pulg) 0,0251	(mm*10 ⁻²) 62,484 67,310 52,832 57,404 U _{z:Z=0} (mm*10 ⁻²) 63,754	2,01E-05 1,34E-05 9,36E-06 1,16E-05 e _{t=(3,15)}	1,72E-05 3,90E-05 2,18E-05 7,23E-05 e _{t=(6,50)}	3,27E-04 4,09E-04 2,55E-04 3,26E-04 e _{c = (18,325)}	>1E+08 3,84E+10 5,54E+10 2,73E+10 NF ₁ >1E+08	1,63E+11 1,10E+10 3,30E+10 6,39E+08 NF ₂	5,49E+06 2,02E+06 1,67E+07 5,56E+06 ND 4,49E+06

NA: No aplica, porque en estas rutas solo se especificó en el diseño una capa asfáltica.

Tabla 5.3 : Análisis del pavimento rígido

Ruta F1 : Bajo Los Ledezma

PAVIMENTO RIGIDO

W ₁₈	LOG ₁₀ (W ₁₈)	Z _R	So	D	D+1	ΔPSI	P _t	S`c	C _d	J	E _c	k	LOG ₁₀ (W ₁₈)
8,00E+06	6,903089987	-1,29	0,3	8,9135	9,9135	2,2	2,5	650	1	3,2	3,52E+05	400	7,874547252
7,00E+06		-1,29	0,3	8,7124	9,7124	2,2	2,5	650	1	3,2	3,52E+05	400	7,852875833
5,00E+06		-1,29	0,3	8,2178	9,2178	2,2	2,5	650	1	3,2	3,52E+05	400	7,81047073
4,00E+06	The state of the s	-1,29	0,3	7,8982	8,8982	2,2	2,5	650	1	3,2	3,52E+05	400	7,794978676
3,00E+06	6,477121255	-1,29	0,3	7,4956	8,4956	2,2	2,5	650	1	3,2	3,52E+05	400	7,794554287
8,00E+06	6,903089987	-1,29	0,3	9,3323	10,332	2,2	2,5	600	1	3,2	3,52E+05	400	7,806896901
7,00E+06	6,84509804	-1,29	0,3	9,1254	10,125	2,2	2,5	600	1	3,2	3,52E+05	400	7,780676545
5,00E+06	6,698970004	-1,29	0,3	8,6184		2,2	2,5	600	1	3,2	3,52E+05	400	7,724283664
4,00E+06	6,602059991	-1,29	0,3		9,2911	2,2	2,5	600	1	3,2	3,52E+05	400	7,696590206
3,00E+06	6,477121255	-1,29	0,3	7,8755		2,2	2,5	600	1	3,2	3,52E+05	400	7,675439281

W₁₈ : rango de ejes equivalentes

Z_R : confiabilidad

S_o : desviación estándar global

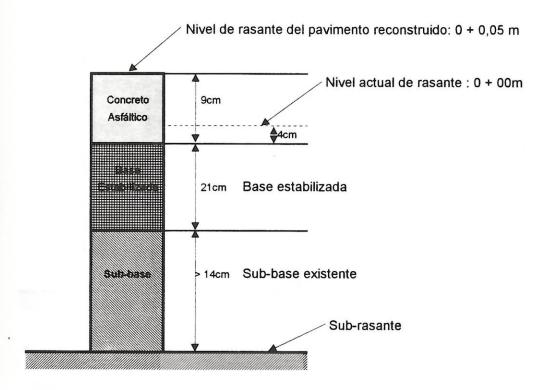
D : espesor de losa PSI : índice de servicio

Pt: índice de servicio el final de la vida útil

S'c: módulo de rotura del concreto

C_d: coeficiente de drenaje

J : coeficiente de transmisión de carga E_c : módulo elástico del conreto (Kg/cm²)


k : módulo de reacción en la base de apoyo de la losa

5.3 DISEÑO PROPUESTO

En los croquis siguientes se detalla la solución estructural propuesta para cada una de la vías.

PERFIL TIPICO DEL PAVIMENTO

RUTA F1: SENARE - Canal 6

Trabajo a realizar :

- Escarificar 25 cm.
- Reconformar y escarificar la sub-base existente. Eliminar el sobretamaño y compactar a una densidad no menor al 97% del Proctor Modificado.
- Colocar 21 cm de base estabilizada.
- Colocar 9 cm de concreto asfáltico (capa de rodamiento).
- Debe verificarse que el espesor mínimo de sub-base sea de 14 cm. En aquellos casos que no se cumpla con este espesor, debe excavarse la gaveta hasta la profundidad requerida para completar ese espesor mínimo especificado.

PERFIL TIPICO DEL PAVIMENTO (CONCRETO)

RUTA F1 : Bajo Los Ledezma - SENARE

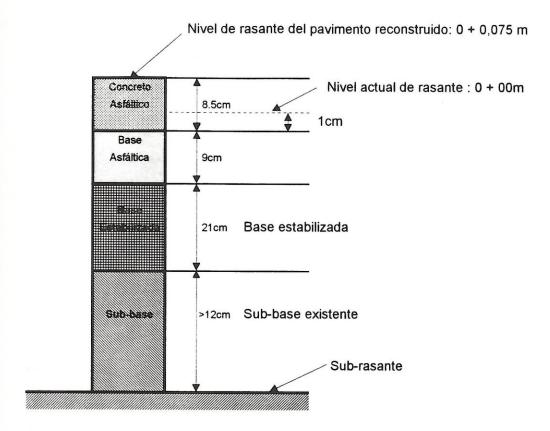
Concreto

24cm Losa de concreto

Capa
Asfáltica

5cm Capa asfáltica

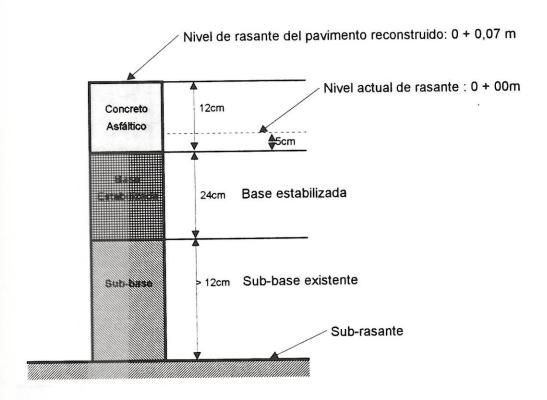
10cm Base estabilizada


15cm Sub-base

Sub-rasante

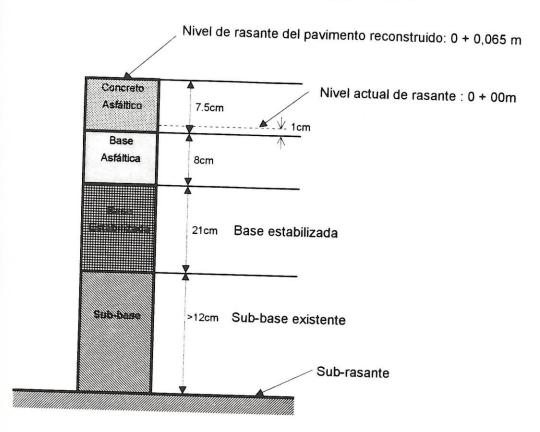
Trabajo a realizar :

- Excavar de nivel de rasante actual hasta 54 cm.
- Después de compactar y conformar la sub-rasante, colocar y conformar 15 cm de sub-base.
- Colocar 10 cm de base estabilizada.
- Colocar 5 cm de capa asfáltica y 24 cm de losa de concreto (capa de rodamiento).


RUTA F2: Canal 6 al INA

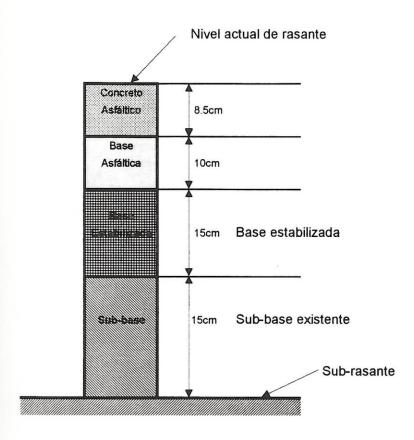
Trabajo a realizar:

- Escarificar 31 cm.
- Reconformar y escarificar la sub-base existente. Eliminar el sobretamaño y compactar a una densidad no menor al 97% del Proctor Modificado.
- Colocar 21 cm de base estabilizada.
- Colocar 9 cm de base asfáltica.
- Colocar 8.5 cm de concreto asfáltico (capa de rodamiento).
- Debe verificarse que el espesor mínimo de sub-base sea de 12 cm. En aquellos casos que no se cumpla con este espesor, debe excavarse la gaveta hasta la profundidad requerida para completar ese espesor mínimo especificado.


RUTA F3 : Central de Mangueras a intersección con la ruta al hotel San José Palacio

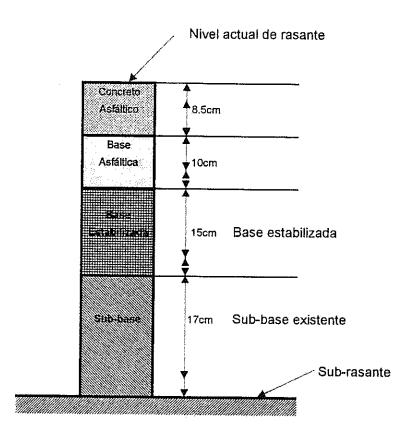
Trabajo a realizar:

- Escarificar 29 cm.
- Reconformar y escarificar la sub-base existente. Eliminar el sobretamaño y compactar a una densidad no menor al 97% del Proctor Modificado.
- Colocar 24 cm de base estabilizada.
- Colocar 12 cm de concreto asfáltico (capa de rodamiento).
- Debe verificarse que el espesor mínimo de sub-base sea de 12 cm. En aquellos casos que no se cumpla con este espesor, debe excavarse la gaveta hasta la profundidad requerida para completar ese espesor mínimo especificado.


RUTA F4 : Entrada al San José Palacio (autopista General Cañas) a intersección con F3

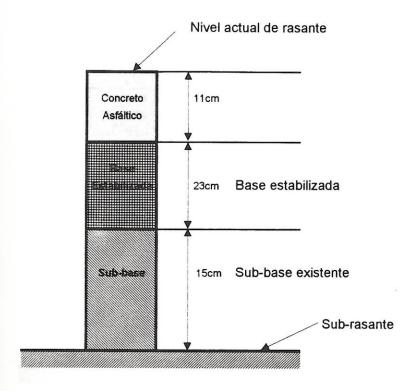
Trabajo a realizar :

- Escarificar 30 cm.
- Reconformar y escarificar la sub-base existente. Eliminar el sobretamaño y compactar a una densidad no menor al 97% del Proctor Modificado.
- Colocar 21 cm de base estabilizada.
- Colocar 8 cm de base asfáltica.
- Colocar 7.5 cm de concreto asfáltico (capa de rodamiento).
- Debe verificarse que el espesor mínimo de sub-base sea de 12 cm. En aquellos casos que no se cumpla con este espesor, debe excavarse la gaveta hasta la profundidad requerida para completar ese espesor mínimo especificado.


RUTA F5: Hotel Irazú a radial La Uruca (zona norte)

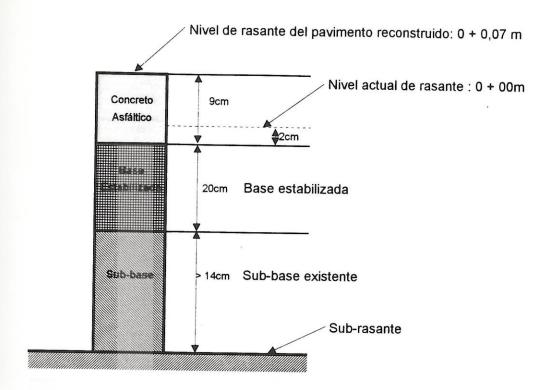
Trabajo a realizar :

- Excavar de nivel de rasante actual hasta 48.5 cm.
- Despúes de compactar la sub-rasante, colocar y conformar 15 cm de sub-base.
- Colocar 15 cm de base estabilizada.
- Colocar 10 cm de base asfáltica.
- Colocar 8.5 cm de concreto asfáltico (capa de rodamiento).


RUTA F5 : Hotel Irazú a radial La Uruca (zona sur)

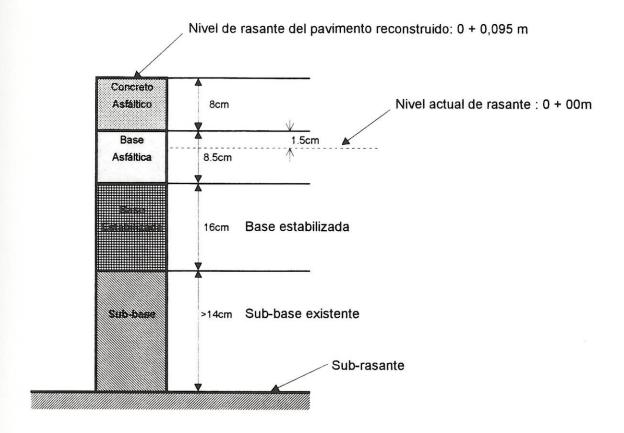
Trabajo a realizar:

- Excavar de nivel de rasante actual hasta 50,5 cm.
- Despúes de compactar la sub-rasante, colocar y conformar 17 cm de sub-base.
- Colocar 15 cm de base estabilizada.
- Colocar 10 cm de base asfáltica.
- Colocar 8.5 cm de concreto asfáltico (capa de rodamiento).


RUTA F6: Radial La Uruca a La Peregrina (zona industrial)

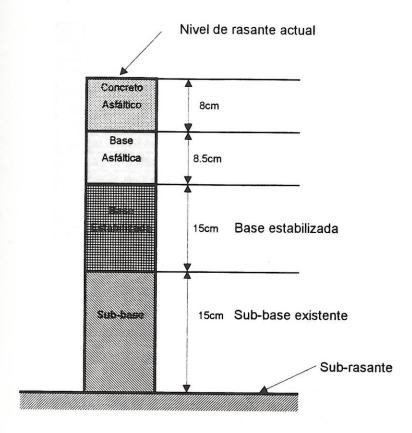
Trabajo a realizar:

- Excavar de nivel de rasante actual hasta 49 cm.
- Despúes de compactar la sub-rasante, colocar y conformar 15 cm de sub-base.
- Colocar 23 cm de base estabilizada.
- Colocar 11 cm de concreto asfáltico (capa de rodamiento).


RUTA F6: Radial La Uruca a La Peregrina (zona residencial)

Trabajo a realizar:

- Escarificar 22 cm.
- Reconformar y escarificar la sub-base existente. Eliminar el sobretamaño y compactar a una densidad no menor al 97% del Proctor Modificado.
- Colocar 20 cm de base estabilizada.
- Colocar 9 cm de concreto asfáltico (capa de rodamiento).
- Debe verificarse que el espesor mínimo de sub-base sea de 14 cm. En aquellos casos que no se cumpla con este espesor, debe excavarse la gaveta hasta la profundidad requerida para completar ese espesor mínimo especificado.


RUTA F7: Centro de llantas LyS a salir a radial La Uruca

Trabajo a realizar:

- Escarificar 23 cm.
- Reconformar y escarificar la sub-base existente. Eliminar el sobretamaño y compactar a una densidad no menor al 97% del Proctor Modificado.
- Colocar 16 cm de base estabilizada.
- Colocar 8,5 cm de base asfáltica.
- Colocar 8 cm de concreto asfáltico (capa de rodamiento).
- Debe verificarse que el espesor mínimo de sub-base sea de 14 cm. En aquellos casos que no se cumpla con este espesor, debe excavarse la gaveta hasta la profundidad requerida para completar ese espesor mínimo especificado.

RUTAS F8 y F9 : Paralelas al sur-oestede la autopista General Cañas

Trabajo a realizar:

- Excavar de nivel de rasante actual hasta 46,5cm.
- Despúes de compactar la sub-rasante, colocar y conformar 15 cm de sub-base.
- Colocar 15 cm de base estabilizada.
- Colocar 8,5 cm de base asfáltica.
- Colocar 8.5 cm de concreto asfáltico (capa de rodamiento).

6. CUADRO DE CANTIDADES

Se presenta a continuación los datos relativos a la sección típica y cantidades estimadas de obra a ejecutar, en cada una de las rutas. Asimismo, al final de este cuadro se presentan las secciones típicas del los diferentes tramos de cada uno de las vías analizadas.

RUTA : F1 (SENARE - Canal 6)	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	15675	0,25	3919
Excavación y conformación de sub-rasante	m ³	-		
Conformación de sub-base existente	m ³	18300	0,15	2745
Colocación y conformación de sub-base	m ³	-	-,,,-	
Colocación y conformación de base estabilizada	m ³	15675	0.21	3292
Colocación y conformación de base asfáltica	m ³	-	0,21	0202
Colocación y conformación de capa asfáltica	m ³	15675	0,09	1411
Pavimento de concreto	m ³	-	5,00	

RUTA : F1 (Puente bajo Los Ledezma - SENARE)	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	2625	0.15	394
Excavación y conformación de sub-rasante	m ³	2625	0,54	1418
Conformación de sub-base existente	m ³		1	
Colocación y conformación de sub-base	m ³	2625	0.16	420
Colocación y conformación de base estabilizada	m ³	2625	0,1	263
Colocación y conformación de base asfáltica	m ³	-	1	
Colocación y conformación de capa asfáltica	m³	2625	0,05	131
Pavimento de concreto	m³	2625	0,24	630

RUTA : F2 (Canal 6 hacia al INA)	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	21675	0,31	6719
Excavación y conformación de sub-rasante	m ³	-		41.10
Conformación de sub-base existente	m ³	21675	0,14	3035
Colocación y conformación de sub-base	m ³	-		
Colocación y conformación de base estabilizada	m ³	21675	0,21	4552
Colocación y conformación de base asfáltica	m ³	21675	0.09	
Colocación y conformación de capa asfáltica	m ³	21675	0,085	1842
Pavimento de concreto	m ³	-	3,000	1012

RUTA : F3 (Central de Mangueras hacia el sur)	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	5716	0,29	1658
Excavación y conformación de sub-rasante	m ³	-	-,	
Conformación de sub-base existente	m ³	5716	0,14	800
Colocación y conformación de sub-base	m ³	-		
Colocación y conformación de base estabilizada	m ³	5716	0.24	1372
Colocación y conformación de base asfáltica	m ³	-		10.2
Colocación y conformación de capa asfáltica	m ³	21675	0.12	2601
Pavimento de concreto	m ³	-	-,,,_	

RUTA : F4 (Entrada al San José Palacio)	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m³	6560	0,3	1968
Excavación y conformación de sub-rasante	m ³		0,0	1900
Conformación de sub-base existente	m ³	6560	0,14	918
Colocación y conformación de sub-base	m ³		0, 14	910
Colocación y conformación de base estabilizada	m ³	6560	0.21	1378
Colocación y conformación de base asfáltica	m ³	6560	0,08	1376
Colocación y conformación de capa asfáltica	m ³	6560	0,00	492
Pavimento de concreto	m ³		0,073	492

RUTA : F5 (Hotel Irazú - Radial Uruca (zona norte))	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m³	3075	0,02	62
Excavación y conformación de sub-rasante	m ³	3075	0,485	1491
Conformación de sub-base existente	m ³		0,700	1401
Colocación y conformación de sub-base	m ³	3075	0.16	492
Colocación y conformación de base estabilizada	m ³	3075	0.15	461
Colocación y conformación de base asfáltica	m ³	3075	0,10	401
Colocación y conformación de capa asfáltica	m ³	3075	0,085	261
Pavimento de concreto	m ³	0070	0,000	201

RUTA : F5 (Hotel Irazú - Radial Uruca (zona sur))	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	3000	0,15	450
Excavación y conformación de sub-rasante	m ³	3000	0,505	1515
Conformación de sub-base existente	m ³	-	, 0,000	1010
Colocación y conformación de sub-base	m ³	3000	0,18	540
Colocación y conformación de base estabilizada	m ³	3000	0,15	450
Colocación y conformación de base asfáltica	m ³	3000	0,10	450
Colocación y conformación de capa asfáltica	m ³	3000	0.085	255
Pavimento de concreto	m ³	0000	0,000	200

RUTA : F6 (La Peregrina (zona industrial))	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	1000	0.04	40
Excavación y conformación de sub-rasante	m ³	1000	0,49	490
Conformación de sub-base existente	m ³		0,40	700
Colocación y conformación de sub-base	m ³	1000	0,18	180
Colocación y conformación de base estabilizada	m ³	1000	0,23	230
Colocación y conformación de base asfáltica	m ³		0,1	230
Colocación y conformación de capa asfáltica	m ³	1000	0.011	11
Pavimento de concreto	m ³		0,011	11

RUTA : F6 (La Peregrina (zona residencial))	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	2173	0,22	478
Excavación y conformación de sub-rasante	m ³		0,22	4/0
Conformación de sub-base existente	m ³	2173	0,16	348
Colocación y conformación de sub-base	m ³	2170	0,10	340
Colocación y conformación de base estabilizada	m ³	2173	0,2	435
Colocación y conformación de base asfáltica	m ³	2175	0,2	435
Colocación y conformación de capa asfáltica	m ³	2173	0.09	106
Pavimento de concreto	m ³	2173	0,09	196

RUTA : F7 (Centro de llantas LYS hacia el norte)	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	6560	0,23	1509
Excavación y conformación de sub-rasante	m ³	-	0,20	1309
Conformación de sub-base existente	m ³	6560	0,16	1050
Colocación y conformación de sub-base	m ³	-	0,10	1030
Colocación y conformación de base estabilizada	m ³	6560	0,16	1050
Colocación y conformación de base asfáltica	m ³	6560	0,085	1030
Colocación y conformación de capa asfáltica	m ³	6560	0,08	525
Pavimento de concreto	m ³		5,00	323

RUTA : F8 y F9 (Paralelas a la General Cañas)	unidad	area	espesor	cantidad
Escarificación y remoción de pavimento existente	m ³	2160	0,07	151
Excavación y conformación de sub-rasante	m ³		5,51	101
Conformación de sub-base existente	m ³	2160	0,465	1004
Colocación y conformación de sub-base	m ³		0,400	1004
Colocación y conformación de base estabilizada	m ³	2160	0.15	324
Colocación y conformación de base asfáltica	m ³	2160	0,085	324
Colocación y conformación de capa asfáltica	m ³	2160	0,08	173
Pavimento de concreto	m ³		0,00	1/3

PROYECTO: MUNICIPALIDA DE SAN JOSE

ZONA: URUCA

RUTA: F1

FECHA: 25-4-97

ANCHO CALZADA	LARGO	AREA	ESTACION	CARACTERISTICAS	OBSERVACIONES
(m)	(m)	(m ²)			
			0	Cordón ambos lados de la vía	
8,75	200	1750			
			200	Cordón ambos lados de la vía	
8,75	100	875			
			300	Cordón sólo lado izquierdo de la vía	
12,95	500	6475		Cordón ambos lados de la vía	
			800	Cordón ambos lados de la vía	
14,3	80	1144		Cordón ambos lados de la vía	
0			880	Cordón ambos lados de la vía	
13,9	400	5560		Cordón ambos lados de la vía	Puente de concreto y
			1280	Cordón ambos lados de la vía	50 m de lozas antes del
7,8	320	2496		Cordón ambos lados de la vía	mismo
			1600	Cordón ambos lados de la vía	
TOTALES	1600	18300			

ZONA: URUCA

RUTA: F2

ANCHO CALZADA	LARGO	AREA	ESTACION	CARACTERISTICAS	OBSERVACIONES
(m)	(m)	(m ²)			
Table 1					
			0	Cordón ambos lados de la vía	
10,7	100	1070		Cordón ambos lados de la vía	
			100	Cordón ambos lados de la vía	
9	100	900		No hay caño en ambos lados	
			200	No hay caño en ambos lados	
11,5	170	1955		No hay caño en ambos lados	
			370	No hay caño en ambos lados	
13,5	130	1755		No hay caño en ambos lados	
			500	No hay caño en ambos lados	
7	500	3500		No hay caño en ambos lados	
			1000	No hay caño en ambos lados	
13,4	300	4020		Cordón caño solo lado izquierdo	
			1300	Cordón caño solo lado izquierdo	
12,3	650	7995		Cordón caño solo lado izquierdo	los últimos 50m tienen
			1950	Cordón caño solo lado izquierdo	un ancho de calzada de
9,6	50	480		Cordón caño solo lado izquierdo	9,6m
			2000	Cordón caño solo lado izquierdo	
TOTALES	2000	21675			-

PROYECTO: MUNICIPALIDA DE SAN JOSE

ZONA : URUCA

RUTA: F3

FECHA: 25-4-97

ANCHO	O CALZADA (m)	LARGO (m)	AREA (m²)	ESTACION	CARACTERISTICAS	OBSERVACIONES
				0	Cordón ambos lados de la vía	
	8,05	710	5716		Cordón ambos lados de la vía	
				710	Cordón ambos lados de la vía	
ТО	TALES	710	5716			

ZONA: URUCA

RUTA: F4

FECHA: 25-4-97

ANCHO CALZADA (m)	LARGO (m)	AREA (m²)	ESTACION	CARACTERISTICAS	OBSERVACIONES
()	(111)	(111)			
			0	Cordón ambos lados de la vía	
8	820	6560		Cordón ambos lados de la vía	
			820	Cordón ambos lados de la vía	
TOTALES	820	6560			

ZONA: URUCA

RUTA: F5

ANCHO CALZADA (m)			ESTACION	CARACTERISTICAS	OBSERVACIONES
(111)	(m)	(m ²)			
	_		0	Cordón amb a la l	
7,5	110	005	U	Cordón ambos lados de la vía	De 0 a 250m existe una
7,5	110	825		Cordón ambos lados de la vía	losa de concreto
			110	Cordón ambos lados de la vía	
5,5	140	770		Cordón ambos lados de la vía	
			250	Cordón ambos lados de la vía	
8	560	4480		Cordón ambos lados de la vía	
			810	Cordón ambos lados de la vía	
TOTALES	810	6075			

PROYECTO: MUNICIPALIDA DE SAN JOSE

ZONA: URUCA

RUTA: F6

FECHA: 25-4-97

ANCHO CALZADA	LARGO	AREA	ESTACION	CARACTERISTICAS	OBSERVACIONES
(m)	(m)	(m ²)			à l
			0	Cordón ambos lados de la vía	Posible ampliación de
8,5	200	1700		Cordón ambos lados de la vía	calzada entre 0 y 650 m
			200	Cordón ambos lados de la vía	de 180 cm.
7,75	190	1473		Cordón ambos lados de la vía	
			390	Cordón ambos lados de la vía	
8	710	5680		Cordón ambos lados de la vía	
			1100	Cordón ambos lados de la vía	
5,9	100	590		Cordón ambos lados de la vía	
			1200	Cordón ambos lados de la vía	
TOTALES	1200	3173			

ZONA: URUCA

RUTA: F7

FECHA: 25-4-97

ANCHO CALZADA	LARCO	ADEA	ESTACION	CADACTEDICTICAC	000000000000000000000000000000000000000
ANCHO CALZADA	LAKGO	AKEA	ESTACION	CARACTERISTICAS	OBSERVACIONES
(m)	(m)	(m ²)			
			0	Cordón ambos lados de la vía	
8,25	430	3548		Cordón ambos lados de la vía	
			430	Cordón ambos lados de la vía	
8	430	3440		Cordón ambos lados de la vía	
			860	Cordón ambos lados de la vía	
TOTALES	860	6560			

ZONA: URUCA

RUTA: F8

ANCHO CALZADA	LARGO	AREA	ESTACION	CARACTERISTICAS	OBSERVACIONES
(m)	(m)	(m ²)			
			0	Cordón ambos lados de la vía	Al final de la ruta existe
8	180	1440		Cordón ambos lados de la vía	una intersección
			180	Cordón ambos lados de la vía	muy ancha
TOTALES	180	1440			

PROYECTO: MUNICIPALIDA DE SAN JOSE

ZONA : URUCA

RUTA: F9

NCHO CALZADA (m)	LARGO (m)	AREA (m²)	ESTACION	CARACTERISTICAS	OBSERVACIONES
	T				· · · · · · · · · · · · · · · · · · ·
			0	Cordón ambos lados de la vía	
8	90	720		Cordón ambos lados de la vía	
			90	Cordón ambos lados de la vía	
TOTALES	90	720			

7. CONCLUSIONES Y RECOMENDACIONES

- 1. El ensayo de deflectometría muestra que, aún en las condiciones más favorables (final de la época de verano), los pavimentos muestran un déficit importante de capacidad estructural.
- 2. Los estudios de laboratorio muestran que en muchos de los sondeos realizados, los materiales constitutivos del pavimento son deficientes en conformación, espesores o calidad de los mismos. Tal es el caso, por ejemplo, de los materiales que en algunos casos se detectaron a nivel de subrasante y sub-base.
- 3. Los problemas más típicos que se detectaron en algunos sondeos, a nivel de sub-rasante, fueron : falta de compactación, presencia de suelos inadecuados que debieron sustituirse por otros de mejor calidad y saturación por deficiencias de drenajes.
- 4. Del análisis de fatiga se concluye que la sub-rasante, desde el punto de vista de falla por fatiga, es susceptible a la variación de módulos en la capa de base. Por tanto deben cumplirse estrictamente las especificaciones respecto a la calidad de la base.
- 5. A nivel de sub-base se detectaron, en algunos de los sondeos, situaciones como las siguientes:
- Mucha variación en espesores.
- Materiales con graduación inadecuada, sobre todo por sobretamaño.
- Ligera contaminación por finos arcillosos.
- Falta de compactación.
- Se detectó, caso Ruta F-2, una capa de concreto asfáltico, por debajo del nivel de sub-base.
- 6. A nivel de base se encontró :
- Capas de poco espesor.
- En general las bases estabilizadas están severamente agrietadas.
- En algunos casos se construyeron bases de lastre (tobas).
- Insuficiencia de capacidad estructural y, en algunos casos, escasa compactación.

7. Capa asfáltica:

En general se trata de una o más capas de concreto asfáltico, de escaso espesor. En muchos casos muestran condiciones avanzadas de oxidación, desprendimientos y agrietamiento severo, con deficiencias de conformación y de drenaje superficial.

En general todos los pavimentos, por su escasa capacidad estructural, se encuentran en condición de deterioro severo y requieren de reconstrucción.

- 8. Los resultados obtenidos en los sondeos muestran que la estructura de los pavimentos es heterogénea en espesores y tipo de materiales. Por lo tanto, al momento de proceder a realizar el trabajo de reconstrucción es muy probable que se presenten situaciones especiales que no fueron detectadas en estas perforaciones.
- 9. Debe realizarse un riguroso control de calidad que garantice la calidad de la obra ejecutada. Conviene que en los términos de referencia quede suficientemente claro el marco de especificaciones, así como los criterios de aceptación, rechazo y penalización de obra por deficiencias en los trabajos a ejecutar.
- 10. De forma especial se subraya la necesidad de realizar un minucioso trabajo de inspección en la conformación y compactación de la sub-rasante y de la capa de sub-base existente.

Los siguientes son algunos de los aspectos más importantes a considerar :

a- Cuando se excava hasta el nivel de sub-rasante (reconstrucción total), o cuando se escarifica parcialmente la sub-base existente, debe garantizarse que la sub-rasante esté debidamente compactada y que no existan suelos de mala calidad a ese nivel, en cuyo caso debe hacerse una sustitución de material. Por tanto debe preverse un item para sustitución y conformación de sub-rasante.

Al momento de realizar este trabajo, podría también detectarse la necesidad de construir algún sub-drenaje, situación que debe preverse en el contrato.

b- Cuando se escarifique parcialmente la sub-base, debe inspeccionarse cuidadosamente la capa que queda como base del pavimento existente. Los problemas típicos que se pueden detectar son: deficiencias de espesor, contaminación por finos plásticos, saturación, falta de compactación, deficiencias granulométricas (especialmente sobre-tamaño), presencia de escombros, capas de piedra o capas de pavimentos antiguos. Todo esto debe analizarse cuidadosamente en el momento de realizar la excavación, para garantizar que la capa de sub-base finalmente conformada y compactada cumpla con los requerimientos del CR-77.

11. Teniendo en cuenta la variación de espesores de capas y calidad de materiales, detectada en los sondeos, es de esperar que las estimaciones previstas en el cuadro de cantidades sufran variaciones al momento de ejecutar los trabajos.

Además, conviene dejar previsto en el contrato algunos itemes no previstos que podrían requerirse eventualmente en los proyectos, como por ejemplo:

- Limpieza de espaldones.
- Conformación de cordón y caño.
- Limpieza de alcantarillas y tragantes.
- Revestimiento de cunetas y espaldones.
- Construcción de sub-drenajes.
- Sustitución de sub-base existente.
- Sustitución de suelo de sub-rasante.

- 12. Es preferible construir la base estabilizada mezclada en planta. Con esto se garantiza una mejor calidad de la obra. Asimismo, debe diseñarse adecuadamente en laboratorio el proceso de estabilización, de modo que se utilicen las dosificaciones adecuadas de estabilizante, y que además el proceso de estabilización se garantice en el largo plazo. Esto implica que los materiales a utilizar deben cumplir los requerimientos de calidad de la norma AASHTO T-210, o sea un índice de durabilidad mínimo de 35, para el agregado grueso y para el agregado fino.
- 13. Tanto la base asfáltica como la capa de concreto asfáltico, deben construirse con lo más altos estándares de calidad. Conviene dejar bien claro en el cartel de licitación todo el proceso que debe seguir el contratista para garantizar la calidad de estos materiales, incluidos los requeriminentos para presentar a aprobación los diseños de mezcla, y los criterios de aceptación y rechazo.
- 14. Respecto a la graduación y algunas otras exigencias, se sugiere que en el cartel de licitación es establezcan normas especiales más allá de las exigencias del CR-77.
- 15. Se sugiere que el cartel de licitación y el proceso de control para el aseguramiento de la calidad queden claramente establecidos, previo al proceso licitatorio.
- 16. Por tratarse de vías urbanas, el tiempo de ejecución de los trabajos debe ser un criterio a considerar en la selección de ofertas. No obstante, este aspecto debe manejarse paralelamente con los procedimientos que se establezcan respecto al manejo de plazos (ampliaciones), las exigencias respecto al programa de trabajo y el monto de las multas por concepto de atrasos en la ejecución de la obra.
- 17. Debe quedar suficientemente claro, en el proceso de selección de ofertas, los procedimientos de control de tránsito y de señalización que utilizará el contratista EN CADA RUTA. No puede quedar al arbitrio este aspecto tan importante, especialmente en el caso de vías urbanas.

8. ESPECIFICACIONES ESPECIALES

La sub-rasante

En aquellos casos donde se requiere hacer excavación, la sub-rasante debe ser conformada y compactada a una densidad no menor al 97% del proctor estándar.

Si a nivel de sub-rasante se detectan suelos de mala calidad, como arcillas de alta plasticidad, suelos de baja capacidad de soporte (CBR < 3.5, al 95% del proctor estándar), limos colapsables, suelos orgánicos, escombros, etc; estos deben ser removidos y sustituidos por un material de préstamo de buena calidad.

En todo el proceso constructivo debe mantenerse una estricta supervisión técnica, de modo que no se apoye el pavimento sobre suelos blandos o mal compactados.

En aquellos casos en que se escarifique parcialmente el pavimento, debe procederse de la siguiente forma :

- Verificar que el espesor de sub-base existente cumpla con los requerimientos del diseño.
- Verificar que no se presenten zonas blandas, contaminadas con suelo de la sub-rasante, saturadas, etc. Todo esto debe ser reparado de forma apropiada, previo a la colocación de las capas superiores.
- -Verificar que la sub-base tenga una graduación apropiada, según el CR-77 y eliminar sobretamaño y cualquier otro aspecto relativo a la calidad del material de sub-base.
- Realizar el trabajo de conformación y compactación de la sub-base granular, según sea el caso, y compactar a una densidad mayor al 98% del proctor modificado. Caso de detectarse que la sub-base presenta deficiencias de calidad, pueden escogerse entre las siguientes opciones :
- Readecuar los materiales existentes eliminando lo que incumple con las especificaciones y adicionando nuevos agregados para superar las deficiencias.
- Hacer un tratamiento con cal, para mejorar las características del material. En este caso, debe de previo estudiarse en laboratorio el proceso a seguir para realizar dicha estabilización.
- Sustituir totalmente el material.

La base estabilizada

Debe construirse una base estabilizada con cal, que cumpla con lo siguientes requisitos:

- Debe tener una resistencia a lacompresión simple equivalente al de una base tipo BE-35, según establece el CR-77.
- -El índice de abrasión de Los Angeles debe ser menor a 45.
- -Debe compactarse a una densidad mayor al 98% del proctor modificado.
- Los agregados deben ser no degradables y deben pasar los requerimientos de durabilidad AASHTO T-210, con índice de durabilidad mayor a 35 para el agregado grueso y el agregado fino.

La base asfáltica

La base asfáltica debe cumplir los siguientes requerimientos :

- Tamaño máximo 25.4 mm.
- Debe cumplir con las restricciones de graduación SUPERPAVE (SHRP).
- El contenido de vacíos VMA debe ser mayor al 12.0%

- El porcentaje de vacíos llenos de asfálto (VFA) debe estar entre 65 y 75%.
- -Si la absorción de los agregados es mayor al 2.5% debe diseñarse la mezcla previo curado de 24 horas.
- Ei índice de durabilidad (AASHTO T -210) debe ser mínimo de 35, para el agregado grueso y el agregado fino.
- El agregado grueso debe cumplir con los requerimientos que establece el CR-77 para mezcla asfáltica en caliente.
- El agregado grueso debe cumplir :
- a-) 90% de partículas con 1 o más caras fracturadas.
- b-) 75% de las partículas con 2 o más caras fracturadas.
- El agregado fino debe tener un equivalente de arena mayor a 45 (vía húmeda y vía seca).
- Adicionalmente, esta mezcla asfáltica debe cumplir con todos los restantes requerimientos que establece el CR-77.
- Cada fuente de material, individualmente, debe cumplir con todos los requerimientos de calidad indicados, para agregado grueso y agregado fino.
- El agregado fino debe tener un índice de durabilidad mínimo de 35, según AASHTO T-210.
- Tanto el agregado grueso como el agregado fino, deben tener una pérdida por sanidad menor al 12% (5 ciclos), según AASHTO T-104.
- El agregado fino debe proceder de quebrador, en una proporción mayor al 80%, respecto al total del agregado fino.
- Todos los agregados deben cumplir los requerimientos de calidad, en apilamiento, individualmente por fuente de agregados y también al ser mezclados de conformidad con el diseño de la mezcla.
- La relación polvo/asfalto debe ser menor a 1.2 (polvo: % que pasa el tamiz # 200).

Capa de rodamiento

Debe ser una mezcla densa, graduación B (CR-77), que cumpla con los requerimientos establecidos para la base asfáltica, exepto en los siguientes aspectos que se modifican según se indica :

- 80% de las partículas (agregado grueso) con 2 o más caras fracturadas.
- Indice de abrasión de Los Angeles menor de 35.
- Vacíos en el agregado mineral (VMA) mayor a 13%.

Asfalto: debe cumplir con la normativa nacional vigente.

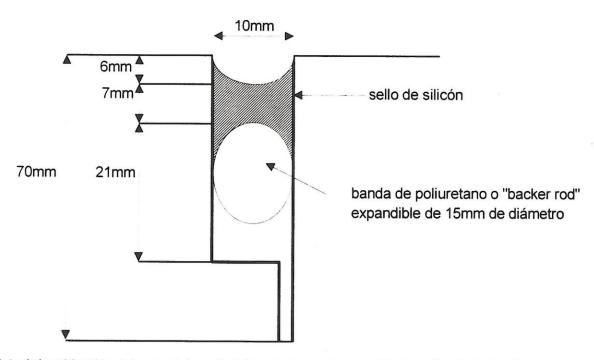
Disposiciones Adicionales

- Previo a realizar cualquier cambio de fuente de materiales, se debe proceder a formular el nuevo diseño de mezcla, y hasta tanto este sea aprobado, no se puede colocar mezcla asfáltica.
- No se pueden realizar cambios en el diseño de mezcla aprobado, a no ser que así lo apruebe la inspección del proyecto.
- Toda mezcla que sea calentada en planta en ⁺. 10°C respecto a la temperatura de mezclado, no se puede colocar en el proyecto.
- Las tolerancias máximas permisibles en la granulometría de la mezcla (base asfáltica y capa de rodamiento), respecto a las cantidades establecidas en el diseño de mezcla, son las siguientes:
- a- Sobre la malla de 19mm (incluida esta) + 5.0%.
- b- Sobre las mallas de 19mm a la 100, excluidas ambas: *_4.0%.
- c- En la malla N° 100 : + 3.0%.
- d- En la malla N° 200 : + 2.0%.
- La mezcla debe compactarse en sitio a una densidad mayor al 97% de la densidad obtenida en el ensayo AASHTO T-166.
- Los vaciós de la mezcla compactada en sitio, no pueden estar por debajo del mínimo establecido en el diseño de mezcla.

Pavimento de concreto

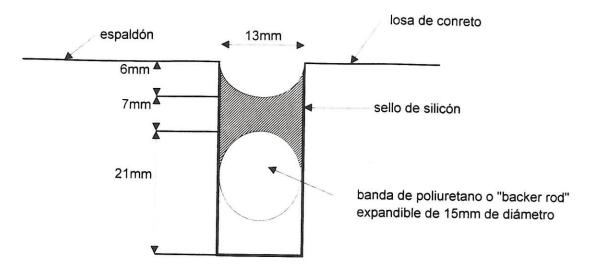
- La conformación de sub-rasante mantiene las mismas especificaciones indicadas para el pavimento flexible.
- La sub-base debe tener una capacidad de soporte CBR mayor a 50 al compactarse al 95% del Proctor Modificado. Además debe cumplir con la graduación A, de la tabla 703.4 de CR-77.
- -La base estabilizada debe cumplir con las especificaciones indicadas para el pavimento flexible.
- El concreto asfáltico debe cumplir con las especificaciones indicadas para la base asfáltica del pavimento flexible.
- La losa de concreto debe cumplir los siguientes requerimientos:
- Espesor : 24cm.
- Separación de juntas transversales : 4.5m
- Diámetro de dovelas : 3.17cm.
- Longitud de dovelas : 50cm.

- -Profundidad de dovelas : 12cm (al centro de la dovela).
- Separación de dovelas : cada 30cm.
- Módulo de rotura del concreto : 45 kg/cm², medido en el ensayo de la viga a 1/3 de la luz libre.
- Barras de la junta longitudinal :


Longitud = 75cm.

Separación = 75cm.

Diámetro = 1.59cm.


Profundidad de corte = 7cm.

- Detalle de juntas transversales y longitudinales.

Nota 1: La ubicación del corte debe coincidir perfectamente con el lado no fijo de la dobela. Nota 2 : El corte profundo puede coincidir con una de las caras del recervorio superior.

Detalle de junta con espaldón

Nota : Deben conformarse las espaldones y el sistema de drenaje lateral, de modo que el agua se evacúe eficientemente de la superficie del pavimento.

ESTIMACION DE CARGAS POR EJE EN LAS ESTACIONES DE CONTEO

PAVIMENTO FLEXIBLE

TABLA #1 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

F1= URUCA	(bajo los Ledesma)	Cap. Máxima
	TPD	
ANO		5%
1997	3371	
1998	3540	
1999		3716,5
2000		3902
2001		4097
2002		4302
2003		4517
2004		4743
2005		4981
2006		5230
2007		5491
2008		5766
2009		6054
2010		6357
	SUMATORIA	55440

TABLA #2 COMPOSICION VEHICULAR

BUSES	CL	PESADOS	
5,5	18	4,5	
	BUSES 5,5		

TABLA #3 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

BUSES	CL	PESADOS	TOTAL
5,56E+05	1,27E+05	5,24E+05	1,21E+06

PAVIMENTO FLEXIBLE

TABLA #1 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

F2= UF	RUCA (Canal 6)	Cap. Máxima
	TPD	
ANO		5%
1997	12598	
1998	13228	
1999		13889,3
2000		14584
2001		15313
2002		16079
2003		16883
2004		17727
2005		18613
2006		19544
2007		20521
2008		21547
2009		22624
2010		23755
	SUMATORIA	207188

TABLA #2 COMPOSICION VEHICULAR

LIVIANOS	S BUSES		PESADOS	
67,5	5	17	10,5	
			10,0	

TABLA #3 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0,001	1	0,07	1,15	
TIPO VEHICULO	LIVIANOS	BUSES	CL	PESADOS	TOTAL
EJES EQUIVALENTES	2,55E+04	1,89E+06	4,50E+05	4,57E+06	6,93E+06

PAVIMENTO FLEXIBLE

TABLA #1 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

F6= URU	CA (La Peregrina)	Cap. Máxima
	TPD	
ANO		5%
1997	4153	
1998	4361	
1999		4578,7
2000		4808
2001		5048
2002		5300
2003		5565
2004		5844
2005		6136
2006		6443
2007		6765
2008		7103
2009		7458
2010		7831
	SUMATORIA	68301

TABLA #2 COMPOSICION VEHICULAR

LIVIANOS	BUSES	CL	PESADOS
51	4	27	18

TABLA #3 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

FACTOR CAMION	0,001	1	0,07	1,15	
TIPO VELICUI O	LIVIANOS	BUSES	CL	PESADOS	TOTAL
TIPO VEHICULO	LIVIANOS	BOSES	- OL	1 Edited	
EJES EQUIVALENTES	6,36E+03	4,99E+05	2,36E+05	2,58E+06	3,32E+06

PAVIMENTO FLEXIBLE

TABLA #1 RANGO PROBLABLE DE CRECIMIENTO DEL FLUJO VEHICULAR

F8 yF9=		Gral. Cañas)	Cap. Máxima
	TPD		
ANO			5%
1997		3371	
1998		3540	
1999			3716,5
2000			3902
2001			4097
2002			4302
2003			4517
2004			4743
2005			4981
2006			5230
2007			5491
2008			5766
2009			6054
2010			6357
	SU	MATORIA	55440

TABLA #2 COMPOSICION VEHICULAR

LIVIANOS	BUSES	CL	PESADOS
68	11	14	7

TABLA #3 EJES EQUIVALENTES EN EL CARRIL DE DISENO, SEGUN TIPO DE VEHICULO

0,001	1	0,07	1,15	
LIVIANOS	BUSES	CL	PESADOS	TOTAL
6,88E+03	1,11E+06	9,92E+04	8,14E+05	2,03E+06
	LIVIANOS	LIVIANOS BUSES	LIVIANOS BUSES CL	LIVIANOS BUSES CL PESADOS

ANEXO 2

ENSAYOS DE LABORATORIO Y SECCIONES TIPICAS DEL PAVIMENTO EXISTENTE

RUTA : F1	MUESTRA : H29	9	FECHA: 14-4-97
CAPA	DES	SCRIPCION	·
PAVIMENTO	Concreto asfáltico.		
BASE	Estabilizada, presenta agrietamie	ento	
			,
SUB-BASE	Lastre gris oscuro, alta plasticida Tamaño máximo = 5,0 cm	d.	
	CBR (90%) = 26,4 Material = No plástico	38,1mm = 94,2 #4 = 69,0 #40 = 39,4	
•			
	PAVIMENTO BASE SUB-BASE	CAPA PAVIMENTO Concreto asfáltico. BASE Estabilizada, presenta agrietamie Tamaño máximo = 5,0 cm CBR (90%) = 26,4 Material = No plástico LIMITES GRANUL. (%Pas) LL = 44,6 #4 = 99,9 LP = 27,5 #40 = 98,4	CAPA DESCRIPCION PAVIMENTO Concreto asfáltico. BASE Estabilizada, presenta agrietamiento SUB-BASE Lastre gris oscuro, alta plasticidad. Tamaño máximo = 5,0 cm CBR (90%) = 26,4 CBR (90%) = 26,4 Material = No plástico 38,1mm = 94,2 #4 = 69,0 #40 = 39,4 #200 = 23,7 SUB-RASANTE Arcilla color café, de alta plastcidad LIMITES GRANUL. (%Pas) CBR sitio = 7 LL = 44,6 #4 = 99,9 LP = 27,5 #40 = 98,4

ZONA: URUÇA	TRAMO : F1	MUESTRA : H = x17 FECHA : 1-7-97
ESPESOR (cm)	CAPA	DESCRIPCION
15,0	PAVIMENTO	Concreto asfáltico. nota: capa formada por 2 capas de 11 y 3 cms respectivamente
	BASE	Lastre gris, tono rosado y exceso de finos Tamaño máximo = 3,75 cm
12,0		
X	SUB-BASE	Lastre gris, con sobretamaño Tamaño máximo = 12,0 cm
15,5		
	SUB-RASANTE	Arcilla limosa, con plasticidad alta, color café, contiene partículas pequeñas en proceso de meteorización y además vetas arcillosas de color gris CBR sitio = 2,0

ZONA: URUCA	TRAMO: F2	MUESTRA: H28	FECHA: 14-4-97
ESPESOR (cm)	CAPA	DE	SCRIPCION
9,5	PAVIMENTO	Concreto asfáltico.	
15,0	BASE	90% = 36,8 LL = NP 38,1mm 95% = 36,8 LP = NP #4 = 4 100% = 55 IP = NP #40 = 2 #200 = 1	3,8 1,0
20,5	SUB-BASE	Lastre gris. Tamaño máximo = 5,0cm	
	SUB-RASANTE	soporte.	7,3

ONA: URUCA	TRAMO: F2	MUESTRA: H = x1 FECHA: 12-6-97
ESPESOR (cm)	CAPA	DESCRIPCION
8,5	PAVIMENTO	Concreto asfáltico.
10,0	BASE	Capa de material estabilizado y fracturado
12,5	SUB-BASE	Lastre gris con exceso de finos. Tamaño máximo = 7.5 cm Nota: a 32 cm se encontró una carpeta de asfalto de 8 cm de espesor y una base de 9 cm.
	SUB-RASANTE	Limo café oscuro, plasticidad media-alta CBR sitio = 6,0

ZONA: URUCA	TRAMO: F3	MUESTRA: H = x2 FECHA: 13-6-97
ESPESOR (cm)	CAPA	DESCRIPCION
3,5	PAVIMENTO	Concreto asfáltico.
	BASE	Estabilizada
12,0		
	order	
A	SUB-BASE	Lastre gris, ligeramente plástico Tamaño máximo = 6,25cm
20.5		
26,5		
▼		
	SUB-RASANTE	Limo de plasticidad media, ligeramente arcilloso, color café
		CBR sitio = 12,0
		I

DESCRIPCION DE LAS CAPAS DE LA ESTRUCTURA DEL PAVIMENTO EXISTENTE

ONA: URUCA	TRAMO: F4	MUESTRA: H31 FECHA: 15-4-97
ESPESOR (cm)	САРА	DESCRIPCION
4,0	PAVIMENTO	Concreto asfáltico.
	BASE	Estabilizada, presenta agrietamiento
10,0		,
X	SUB-BASE	Lastre gris-café, ligeramente plástico. Tamaño máximo = 5,0cm
35,0		Material = No plástico GRANUL. (%Pas) Densidad sitio = 1770 Kg/cm² 38,1mm = 70,2
▼	SUB-RASANTE	Limo arcilloso, color café, plasticidad media.
		LIMITES GRANUL. (%Pas) CBR sitio = 5,0 LL = 38,4 #4 = 98,9 LP = 22,5 #40 = 90,6 IP = 15,9 #200 = 70,5

IA: URUCA	TRAMO: F5	MUESTRA: H51 FECHA: 15-4-97
ESPESOR (cm)	CAPA	DESCRIPCION
1,7	PAVIMENTO	Concreto asfáltico.
X	BASE	Estabilizada, agrietada
9,8		
X		
X	SUB-BASE	Lastre gris ligeramente café. Tamaño máximo = 5,0cm
X		Material = No plástico
18,0		DENS = 1638 Kg/cm ² %COMPACT. = 96,3
▼	SUB-RASANTE	Suelo arcilloso, plasticidad media, color café.
		LIMITES GRANUL. (%Pas) CBR sitio = 4,0 LL = 35,4 #4 = 99,3
,		LP = 23,4 #40 = 89,8 IP = 12,0 #200 = 66,8

DESCRIPCION DE LAS CAPAS DE LA ESTRUCTURA DEL PAVIMENTO EXISTENTE

ONA: URUCA	TRAMO: F5	MUESTRA : H = x16	FECHA: 1-7-97
ESPESOR (cm)	CAPA	DESCRIP	CION
15,0	PAVIMENTO	Concreto	
	BASE	No existe	
O,O	And the second s		
The state of the s	The state of the s		
X	SUB-BASE	No existe	
		- Company of the Comp	
0,0			
y	SUB-RASANTE	Limo con contenido orgánico y alta	plasticidad, color café oscur
	*	CBR sitio < 1	

NA: URUCA	TRAMO: F6	MUESTRA: H32 FECHA: 15-4-97
ESPESOR (cm)	CAPA	DESCRIPCION
4,0	PAVIMENTO	Concreto asfáltico.
X	BASE	Estabilizada, agrietada
9,8		
X	SUB-BASE	Lastre gris.
15,0		Tamaño máximo = 5,0cm Material = No plástico
▼	SUB-RASANTE	Material arcillo-limoso, plasticidad media, color café.
		LIMITES GRANUL. (%Pas) CBR sitio = 8,0 LL = 41,8 #4 = 99,4 LP = 27,3 #40 = 96,6 IP = 14,5 #200 = 76,0

ZONA: URUCA	TRAMO : F7	MUESTRA : H30	1	FECHA: 16-4-97
ESPESOR (cm)	CAPA		DESCRIPCIO	NC
6,5	PAVIMENTO	Concreto asfáltico.		
	BASE	Nota: se tomó una sola a que era una sola capa Lastre café rosado. Tamaño máximo = 10,0 CBR (90%) = 40 LIMITES LL = 25,8 LP = 22,3 IP = 3,5	a. Icm GRANUL. (%Pas) (se y sub-base, debído Densidad sitio = 1655 Kg/cm² %Compactación sitio. = 96,1
	SUB-RASANTE	Lastre gris-rosado. Tamaño máximo = 6,25 CBR (90%) = 40	cm	
		LP = 26,6	GRANUL. (%Pas) #4 = 99,7 #40 = 92,6 #200 = 72,2	CBR sitio = 5.0

ESPESOR (cm) CAPA PAVIMENTO Concreto asfáltico. BASE Estabilizada, agrietada 11,0 I SUB-BASE Lastre gris Tamaño máximo = 3,75 cm SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro CBR sitio = 6,0	MUESTRA: H = x15 FECHA: 1-7-97	TRAMO: F7	RUCA	ZONA: URU
BASE Estabilizada, agrietada 11,0 X SUB-BASE Lastre gris Tamaño máximo = 3,75 cm 15,5 SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro	DESCRIPCION	CAPA	ESOR (cm)	ESPES
SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro	asfáltico.	PAVIMENTO		2,5
SUB-BASE Lastre gris Tamaño máximo = 3,75 cm 15,5 SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro	ada, agrietada	BASE	X Property of the second of th	*
Tamaño máximo = 3,75 cm 15,5 SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro				11,0
Tamaño máximo = 3,75 cm 15,5 ■ SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro	,			
15,5 ▼ SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro		SUB-BASE	X Total	*
SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro				15,5
SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro				:
SUB-RASANTE Limo arcilloso, plasticidad media-alta, color café claro	*		v	*
CBR sítio = 6,0	lloso, plasticidad media-alta, color café claro	SUB-RASANTE		
	6,0	,		
1 1				

ZONA: URUCA	TRAMO : F8	MUESTRA: H = x3 FECHA: 12-6-97
ESPESOR (cm)	CAPA	DESCRIPCION
5,5	PAVIMENTO	Concreto asfáltico. nota: capa formada por 2 capas, la segunda muy deteriorada, de 3 cm de espesor
	BASE	lastre gris, ligeramente plástico Tamaño máximo = 5,75cm
25,5		
X	SUB-BASE	No existe
0,0		
_		
	SUB-RASANTE	Suelo limo-arcilloso de plasticidad media, color café. CBR sitio = 1,5

PRUEBA DE COMPACTACION

FECHA

28 de abril de 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LASTRE

LOCALIZACION:

DE CANAL 6 HACIA EL OESTE

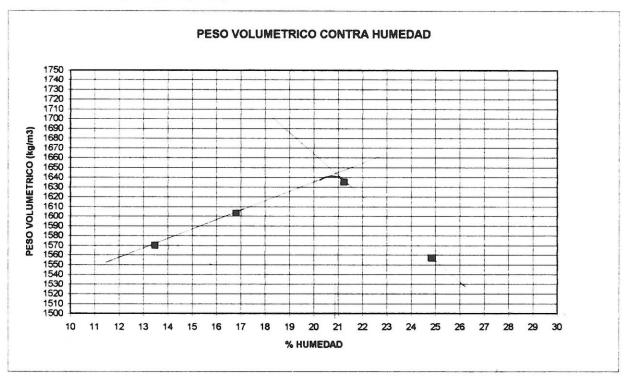
CARACTERIZACION DE MUESTRA: MUESTRA No:

BASE F-2

HUECO: 28

PRUEBA: PROCTOR MODIFICADO

COMPACTACION


DETERMINACION	1	2	3	4	5	6	
Ww + Pmolde	5897	5983	6087	6050			
Desalds	1015	1015	4045	404F			

P molde 4215 4215 4215 4215 Ww 1682 1768 1872 1835 δw 1781 1872 1982 1943 δs 1570 1603 1635 1557

CONTENIDO DE HUMEDAD

No. CAPSULA	18	25	11	3
Ww + Wc	547,2	516,6	549,4	525,5
Ws + Wc	497,2	459,2	474,7	442,1
Www.	50,0	57,5	74.7	83,4
Wc	125,9	117,3	122,8	106,4
Ws	371,4	341,9	351,9	335,7
%W	13,5	16,8	21,2	24,8

Vmáx = 1640 Kg/m3 Wópt = 20.9. %

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PARAMETROS DE SUELOS

PRUEBA DE C.B.R.

PROYECTO)	MUNICIP	ALIDAD	DE SAM	JOSE					INFORME N	•:			
										FECHA:		5 DE MAYO	DE 1997	
MUESTRA LOCALIZAC DESCRIPCI	CION:	F-2		BASE	HUECO:						8 m =	1640	Wo:	20.9 %
							COME	PACTAC	ION					
GOLP.	MOLDE	Ww+M	Ww	Χm	Хs	% C	CAP.	Ww + C	Ws + C	Wc	е	w w	Ws	%W
56	5	11263 7143 11170	4120	1936	1612	98.3	9	446,4	392,0	127.4		54.3	264.7	20.5

37

467.2

425.3

410.3

364.9

118.3

65,0

56.8 292.0

60.5 299.8

19.5

20.2

EXPANSION

1912

1832

1593

1526

97.1

93.1

7119

11070 7168

4051

3902

12

MOLDE	FECHA	HORA		LECTUR	A EXTE	NSOMET	RO		% EXPAN	SION					
			Lo	1 D	2 D	3 D	4 D	1 D	2 D	3 D	4 D				
5	28-abr	7:00	340.00	338,00	337.00	337.00		-0. 59	-0.88	-0.88					
12	28-abr	7:00	305.00	303,00	302.00	302.00		-0.66	-0.98	-0.98					
8	28-abr	7:00	282.00	282.00	282.00	282,00		0.00	0.00	0.00					
ESFUERZO UNITARIO CONTRA COMPACTACION															
MOLDE	لما	0.025	0.050	0,075	0.100	0.150	0.200	0.250	0.300	0.350	0.400				
	0.0	6.0	26.0	59.0	92,0	160.0	222,0	274.0	325.0	374.0	425.0				
5	0.06	1.476	6,196	13,984	21.772	37.82	52,452	64.724	76,78	88,324	100.36				
	0.0	7.0	24.0	50.0	77.0	135.0	188.0	233.0	276.0	315.0	352.0				
12	0.06	1.712	5.724	11.86	18,232	31.92	44.428	55.048	65,196	74.4	83,132				
	0.0	16.0	44.0	74.0	98.0	140.0	176,0	203.0	228.0	250,0	271.0				
8	0.06	3,836	10.444	17,524	23,188	33,1	41.596	47,968	53,868	59,06	64,016				

	CALCU	LADOS	3	CORREGIDOS					
No. golpes	0,1	0,2	%СОМРАСТ.	0,1	0,2				
56	31,10	59,50	98,3	44.18	56.34				
28	25.80	50.20	97,1	36,65	47,54				
14	25.80	43,50	93,1	36.65	41.19				

PRUEBA DE COMPACTACION

FECHA

27 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LASTRE ROJIZO CON BETAS GRISES

LOCALIZACION:

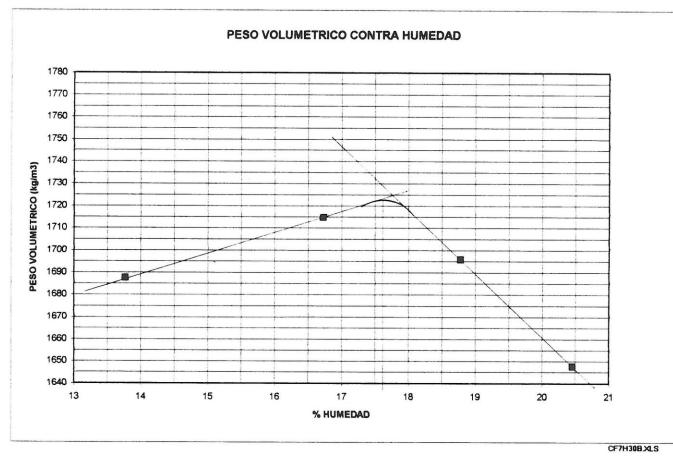
CARACTERIZACION DE MUESTRA: MUESTRA No:

BASE F-7

HUECO:

PRUEBA: PROCTOR MODIFICADO

COMPACTACION 6


30

DETERMINACION	1	2	3	4	5	
Ww + Pmolde	6102	6114	6086	6025		
P molde	4212	4212	4212	4212		
Ww	1890	1902	1874	1813		
δw	2002	2014	1985	1920		
δs	1715	1696	1648	1688		

CONTENIDO DE HUMEDAD

No. CAPSULA	41	5	X1	43
Ww + Wc	498,7	628,5	666,2	627,0
Ws + Wc	445,5	549,3	572,0	566,6
Ww	53,2	79,2	94,2	60,4
Wc	127,4	127,5	111,5	127,9
Ws	318,1	421,8	460,5	438,8
%W	16,7	18,8	20,5	13,8

Smáx = 1723 kg/m³ Wópt = 17.6 %

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PARAMETROS DE SUELOS

PRUEBA DE C.B.R.

PROYECTO	0	MUNIC	IPALIDA	D DE SA	N JOSE					INFORME	N°:			
										FECHA:		2 DE JUNIO	DE 1997	
MUESTRA		F-7	,		HUECO): H -3	พา							
OCALIZA			BASE											
DESCRIPC	ION DEL I	MATERIAL	.:	LASTRE	ROJIZO	CON BE	TAS GRIS	SES			δ m =	1723	Wo:	17.6 %
							СОМ	PACTAC	ION					
GOLP.	MOLDE	Ww +M 11490	Ww	X m	Хs	% C	CAP.	Ww + C	Ws + C	Wc	е	ww	Ws	%W
56	13	7191 11429	4299	2033	1741	101.1	77	354.5	318,6	104.6		35,9	214.0	16.8
28	14	7178 11403	4251	2010	1712	99.4	13	413.3	370.1	121.8		43.2	248.3	17.4
14	16	7357	4046	1915	1628	94.5	17	490.7	436.6	129.5		54.1	307.1	17.6
														17.3
					EXPA	NSION								
1	MOLDE	FECHA	HORA		LECTUR	A EXTE	SOMETH	ю		% EXPANS				
				Lo	1 D	2 D	3 D	4 D	1 D	2 D	3 D	4.5		
	13	27-may	6:00	303.00	302.00	302.00	302.00		-0.33	-0.33		4 D		
	14	27-may	6:00	369,00	370.00	369.00	369.00	_	0.27	0.00	-0.33	2		
	16	27-may	6:00	282.00	284.00	284.00	284,00	-	0.71	0.71	0.00 0.71	-	×	
				ESFUE	RZO UP	HTARIC	CON	TRA COI	МРАСТА	CION				
,	MOLDE	ما	0,025	0.050	0.075	0.100	0.150	0.200	0.250	0.300	0.350	0.400		

305.5 422.0

58,116 84,312

188.0 248.0

357.0

246.0

534.0

126.084

450.0

106,26

297.0

70.152

625.0

147.56

548.0

129,388

346.0

81.716

715.0

168.8

618.0

145.91

385.0

90.92

794.0

187.444

708.0

167,148

418.0

98.708

	CALCL	LADOS		CORREGIDOS				
No. golpes	0,1	0,2	%COMPACT.		0.2			
56	48.00	104.80	101,1	68.18	99.24			
28	36,50	88.50	99.4	51.85	83.81			
14	32,00	61,00	94,5	45.45	57.77			

0.0

0.0

0.0

13 0.06

14 0.06

16 0.06

23.0

5.488

16.0

3.836

22.0

5.252

59.0

13,984

43.0

10.208

54.0

12.804

112,0

81.0

82.0

19,176 31,212

177.0

132.0

122.0

26,492 41,832 72,158 99,652

19,412 28.852 44.428 58,588

PRUEBA DE COMPACTACION

FECHA

28 de abril de 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LASTRE GRISACEO

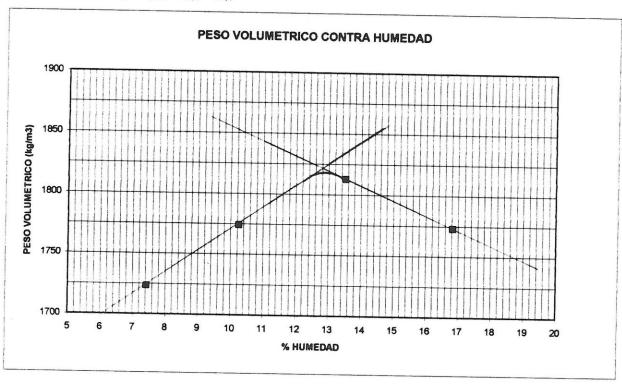
LOCALIZACION:

COSTADO OESTE DE REHABILITACION

CARACTERIZACION DE MUESTRA: SUBBASE

MUESTRA No:

F-1 HUECO: 29


PRUEBA: PROCTOR MODIFICADO

COMPACTACION

DETERMINACION	1	2	3	4	5
Ww + Pmolde	5963	6062	6158	6171	
P molde	4215	4215	4215	4215	
Ww .	1748	1847	1943	1956	
δw	1851	1956	2058	2071	
δs	1723	1774	1813	1773	

CONTENIDO DE HUMEDAD

46	50	53	52
237,6	156,4	256.0	220.1
223,8			
13,8	10,9	26,0	26.2
37,7	39,3	37.5	38.2
186,1	106,3	192.5	155.7
7,4	10,2	13,5	16,8
	237,6 223,8 13,8 37,7 186,1	237,6 156,4 223,8 145,6 13,8 10,9 37,7 39,3 186,1 106,3	237,6 156,4 256,0 223,8 145,6 230,0 13,8 10,9 26,0 37,7 39,3 37,5 186,1 106,3 192,5

10,1

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PARAMETROS DE SUELOS

PRUEBA DE C.B.R.

PROYECTO)	MUNICIPALIDAD SAN JOSE							INFORME N*: FECHA: 28 de abril de 1997						
		1-21-21								I ECHA .		20 de april	Q8 199		
MUESTRA		F-1								HUECO:					
LOCALIZAC				DE REHA											
DESCRIPC	ON DEL A	MATERIAL :		LASTRE	E GRISA	ŒO		SUBBAS	E						
											δ m =	1835	Wo:	11	%
							12125145								
							COM	PACTAC	ION						
GOLP.	MOLDE	Ww +M	Ww	X m	Χs	% C	CAP.	Ww + C	Ws + C	Wc	е	ww	Ws	%W	
		11300													
56	15	7164	4136	1955	1775	96,7	81	340.8	319.6	117.0		21.2	202.7	10.5	
		11105											202.7	10.5	
28	6	7178	3927	1841	1671	91.1	71	333.4	313.4	111,4		20.0	202.0	9.9	
		11020											202.0	5.5	
14	1	7282	3738	1764	1602	87.3	43	346.6	326.6	127,9		20.0	198,7	10.0	

EXPANSION

MOLDE	FECHA	HORA		LECTUR	A EXTE	NSOMET	RO		% EXPAN	SION	
			Lo	1 D	2 D	3 D	4 D	1 D	2 D	3 D	4 D
15	26-abr	12:45	355.00	356.00	357.00	356,00	356,00	0.28	0.56	0.28	0.28
6	26-abr	12:45	300.00	300,00	300.00	302.00	302,00	0.00	0.00	0.67	0.67
1	26-abr	12:45	348,00	350,00	351.00	350,00	352,00	0.57	0.86	0.57	1.15
			ESFUE	RZO U	NITARI	o cor	NTRA C	OMPACT	TACION		
MOLDE	لما	0.025	0.050	0.075	0.100	0.150	0.200	0.250	0,300	0.350	0.400
	0.0	42.0	100.0	167.0	228.0	322.0	395,0	455.0	506.0	558.0	601.0
15	0.06	9.972	23.66	39,472	53,868	76.052	93.28	107,44	119,476	131.75	141.896
	0.0	29.0	56.0	76.0	93.0	123.0	147.0	168.0	187.0	206.0	224.0
6	0.06	6.904	13.276	17,996	22.008	29,088	34.752	39.708	44.192	48.676	52.924
	0.0	15.0	28.0	37.0	43.0	52.0	58.0	64.0	71.0	77.0	83.0
1	0.06	3,6	6.668	8.792	10,208	12,332	13,748	15,164	16.816	18 232	19 648

	CALCU	LADOS	8	CORREGIDOS		
No. golpes	0,1	0,2	%COMPACT.	0,1	0,2	
56	53,87	93.28	96,7	76.52	88.33	
28	22.01	34.75	91,1	31.26	32.91	
14	10,21	13.75	87,3	14.50	13,02	

PRUEBA DE COMPACTACION

FECHA

14 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LASTRE GRISACEO

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

MUESTRA No:

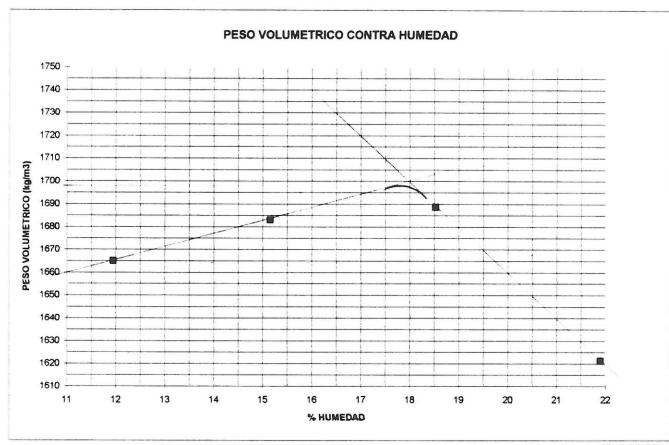
SUBBASE

F-4

HUECO # 31

PRUEBA: PROCTOR MODIFICADO

COMPACTACION


7

DETERMINACION	1	2	3	4	5	6	
Ww + Pmolde	5970	6040	6100	6076			
P molde	4210	4210	4210	4210			
Ww	1760	1830	1890	1866			
δw	1864	1938	2002	1976			
δs	1665	1683	1689	1621			

CONTENIDO DE HUMEDAD

No. CAPSULA	71	66	26	24
Ww + Wc	327,7	385,0	452,5	462,2
Ws + Wc	304,6	346,7	401,6	398,1
Ww	23,1	38,3	50,9	64,1
Wc	111,4	94,3	127,0	105,2
Ws	193,3	252,4	274,6	292,9
%W	11,9	15,2	18,5	21,9

 $4 \text{ mal}_{x} = 1632 \text{ kg}$ 4 Wopt = 17.9. %

PRUEBA DE COMPACTACION

FECHA

28 de abril de 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

MUESTRA No:

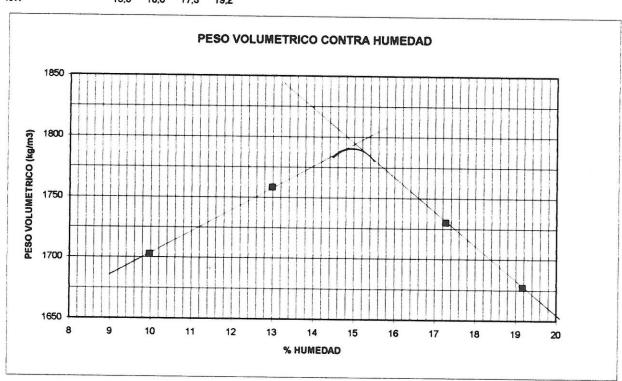
SUBBASE

F-5

HUECO: 51

PRUEBA: PROCTOR MODIFICADO

COMPACTACION


7

DETERMINACION	1	2	3	4	5	6
Ww + Pmolde	5983	6091	6131	6102		
P molde	4215	4215	4215	4215		
Ww	1768	1876	1916	1887		
δw	1872	1987	2029	1998		
δ s	1703	1758	1730	1677		

CONTENIDO DE HUMEDAD

No. CAPSULA	2	9	37	16
Ww + Wc	270,7	454,3	354,2	358,1
Ws + Wc	255,8	416,7	319,4	320,6
Ww	15,0	37,6	34,7	37,5
Wc	105,6	127,3	118,2	125,0
Ws	150,1	289,4	201,2	195,6
%W	10,0	13,0	17,3	19,2

I max = 1790 kg/m3 Wept = 15%

PRUEBA DE COMPACTACION

FECHA

28 de abril de 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LASTRE AMARILLENTO

LOCALIZACION:

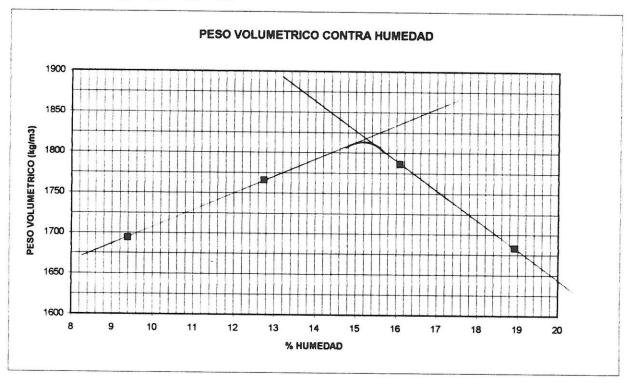
CARACTERIZACION DE MUESTRA:

STRA: SUBBASE

MUESTRA No:

F-6 HUECO: 32

PRUEBA: PROCTOR MODIFICADO


COMPACTACION

DETERMINACION	1	2	3	4	5	6	7
Ww + Pmolde	5965	6095	6173	6105			
P molde	4215	4215	4215	4215			
Ww	1750	1880	1958	1890			
δw	1853	1991	2074	2002			
δ s	1694	1766	1786	1683			

CONTENIDO DE HUMEDAD

No. CAPSULA	49	54	51	47
Ww + Wc	439,2	468,5	425,9	442,8
Ws + Wc	405,0	420,1	372,4	378,4
Ww	34,3	48,5	53,5	64,4
Wc	40,1	39,8	39,6	38,2
Ws	364,9	380,3	332,8	340.3
%W	9,4	12,7	16,1	18,9

Mmax = 1912 kg/m3 Wopt = 15.2 %

PRUEBA DE COMPACTACION

FECHA

16 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD SAN JOSE

DESCRIPCION DE MATERIAL:

LIMO COLOR CAFE CLARO

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

SUBRASANTE

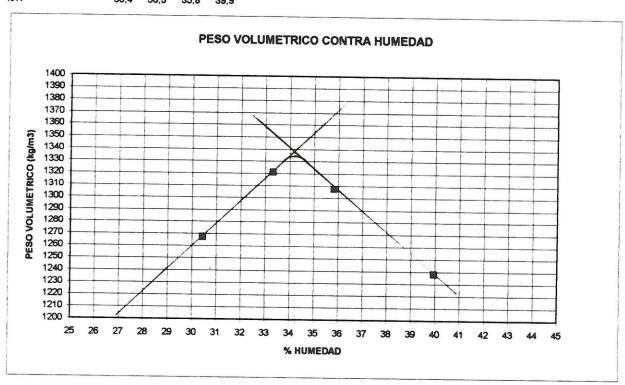
MUESTRA No:

F-7 HUECO:

30

7

PRUEBA: PROCTOR ESTANDAR


COMPACTACION

DETERMINACION	1	2	3	4	5	6
Ww + Pmolde	5773	5875	5889	5848		
P molde	4212	4212	4212	4212		
Ww	1561	1663	1677	1636		
δw	1653	1761	1776	1733		
δς	1267	1321	1308	1238		

CONTENIDO DE HUMEDAD

No. CAPSULA	18	X	X-1	N
Ww + Wc	349,7	378,2	375,4	385,1
Ws + Wc	295,1	316,5	305,8	304,2
Ww	54,6	61,7	69,7	80,9
Wc	115,8	131,3	111,3	101,7
Ws	179,3	185,2	194,4	202,6
%₩	30,4	33,3	35,8	39,9

thmáx = 1334 kg/m³ Wópt 34.2 %

UNIVERSIDAD DE COSTA RICA LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES PARAMETROS DE SUELOS

PRUEBA DE C.B.R.

PROYECTO

MUNICIPALIDAD DE SAN JOSE

INFORME N°:

FECHA:

22 DE MAYO DE 1997

MUESTRA No:

F-7

HUECO: H-30

LOCALIZACION: S
DESCRIPCIÓN DEL MATERIAL:

SUBRASANTE: LIMO COLOR CAFE CLARO

 $\delta m = 1334$

Wo:

34.2 %

COMPACTACION

GOLP.	MOLDE	Ww +M	Ww	Χm	Xs	% C	CAP.	Ww+C	Ws + C	Wc	е	Ww	Ws	% W
56	34	11095 7307	3788	1799	1351	101.3	22	334.8	277.8	105.8		57.0	172.0	33.1
28	18	11012	3696	1725										
20	10	7316 10144	3090	1735	1301	97.5	B3	347,7	287.6	107,2		60.1	180,4	33.3
14	30	6780	3364	1584	1183	88.7	31	324.8	269.4	105.8		55.4	163.6	33.9 33.4

EXPANSION

MOLDE FECHA HORA				LECTURA		EXTENSOMETRO			% EXPANSION		
			Lo	1 D	2 D	3 D	4 D	1 D	2 D	3 D	4 D
34	16-may	2:00	313.00	323.00		324,00	325,00	3.19		3,51	3,83
18	16-may	2:00	271.00	285,00	-	285.00	285,00	5,17	-	5,17	5,17
30	16-may	2:00	288.00	300,00		300.00	300,00	4.17	-	4,17	4,17

ESFUERZO UNITARIO CONTRA COMPACTACION

MOLDE	ما	0.025	0.050	0,075	0.100	0.150	0.200	0.250	0,300	0,350	0.400
	0.0	9.0	17.0	23.0	27.0	33.0	38.0	42.0	46.0	48.0	51.0
34	0.08	2.184	4.072	5,488	6.432	7.848	9.028	9.972	10,916	11,388	12,096
	0.0	6.0	11.0	14.0	17.0	21.0	24.0	27.0	29.0	31.0	33.0
18	0.06	1.476	2.656	3,364	4,072	5,016	5.724	6.432	6,904	7.376	7.848
	0.0	2.0	3,5	5.0	6.0	7.0	8.0	9.0	10.0	10.5	11.0
30	0.08	0.532	0,886	1,24	1,476	1,712	1,948	2.184	2.42	2,538	2.656

	CALCU	LADOS	3	CORREGIDO		
No. golpes	0,1	0,2	%COMPACT.	0,1	0,2	
56	8,43	9,03	101,3	9,14	8,55	
28	4.07	5.72	97.5	5.78	5.42	
14	1.48	1.95	88,7	2,10	1.84	

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA

30 DE ABRIL DE 1997

MUESTRA: SUBBASE

PROYECTO

MUNICIPALIDAD DE SAN JOSE

MUESTRA:

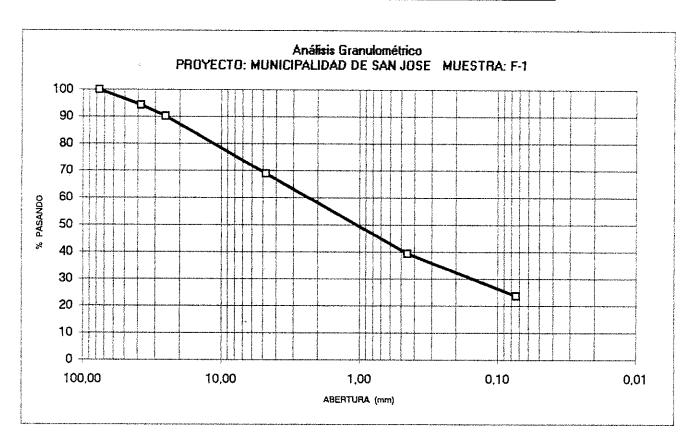
F-1 HUECO: 29

UBICACIÓN: COSTADO OESTE

DESCRIPCION: LASTRE

Análisis mecánico (lavado)

DE REHABILITACION


Midwig Medino (idadde

PESO INICIAL:

8821,0 g.

PESO FINAL: 6732,9 g.

ldentificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
3"	76,20	0,0	0,0	0,0	100,0
1 1/2"	38,10	507,6	5,8	5,8	94,2
1"	25,40	357,2	4,0	9,8	90,2
#4	4,75	1872,9	21,2	31,0	69,0
#40	0,45	2607,5	29,6	60,6	39,4
#200	0,074	1384,2	15,7	76,3	23,7

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA PROYECTO

25 DE ABRIL DE 1997

MUNICIPALIDAD DE SAN JOSE

MUESTRA : SUB RASANTE

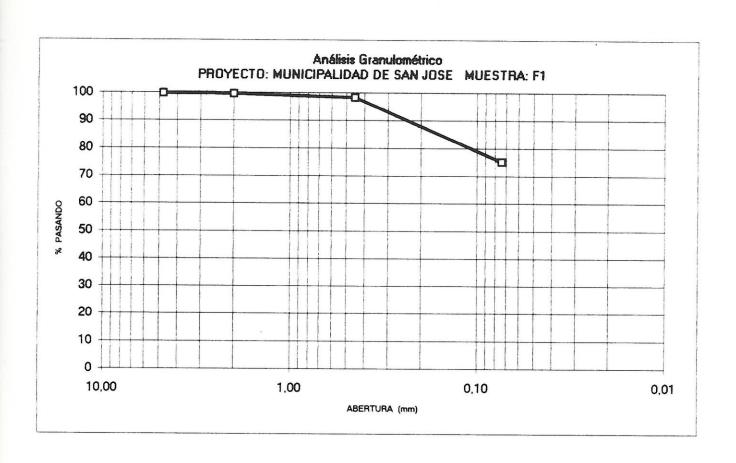
LOCALIZACION:

COSTADO DESTE REABILITACION

H:29 F1

UBICACIÓN:

Análisis mecánico (lavado)


PESO INICIAL:

357,6 g.

PESO FINAL:

89,2 g.

ldentificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
#4	4,75	0,5	0,1	0,1	99,9
#10	2,00	0,5	0,1	0,3	99,7
#40	0,45	4,8	1,3	1,6	98,4
#200	0,074	83,2	23,3	24,9	75,1

CARACTERISTICAS DE LOS AGREGADOS

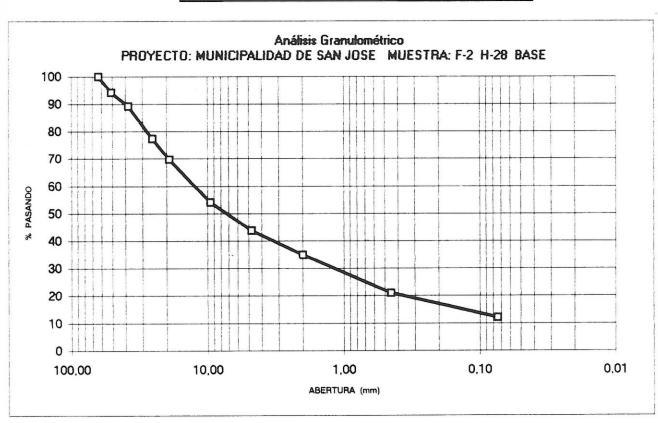
ANALISIS GRANULOMETRICO

FECHA 7 DE MAYO DE 1997

MUESTRA : BASE

PROYECTO MUNICIPALIDAD DE SAN JOSE MUESTRA: F-2 HUECO: 28

UBICACIÓN:


Análisis mecánico

PESO INICIAL: 98

9862,0 g.

PESO FINAL: 8714,6 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
21/2"	63,00	0,0	0,0	0,0	100,0
2"	50,80	574,8	5,8	5,8	94,2
1 1/2"	38,10	491,9	5,0	10,8	89,2
1"	25,40	1169,8	11,9	22,7	77,3
3/4"	19,10	743,0	7,5	30,2	69,8
3/8"	9,53	1546,8	15,7	45,9	54,1
#4	4,75	1014,5	10,3	56,2	43,8
#10	2,00	8,77,8	8,9	65,1	34,9
#40	0,45	1368,0	13,9	79,0	21,0
#200	0,07	877,0	8,9	87,8	12,2

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA PROYECTO 25 DE ABRIL DE 1997

MUESTRA :

SUB RASANTE

LOCALIZACION:

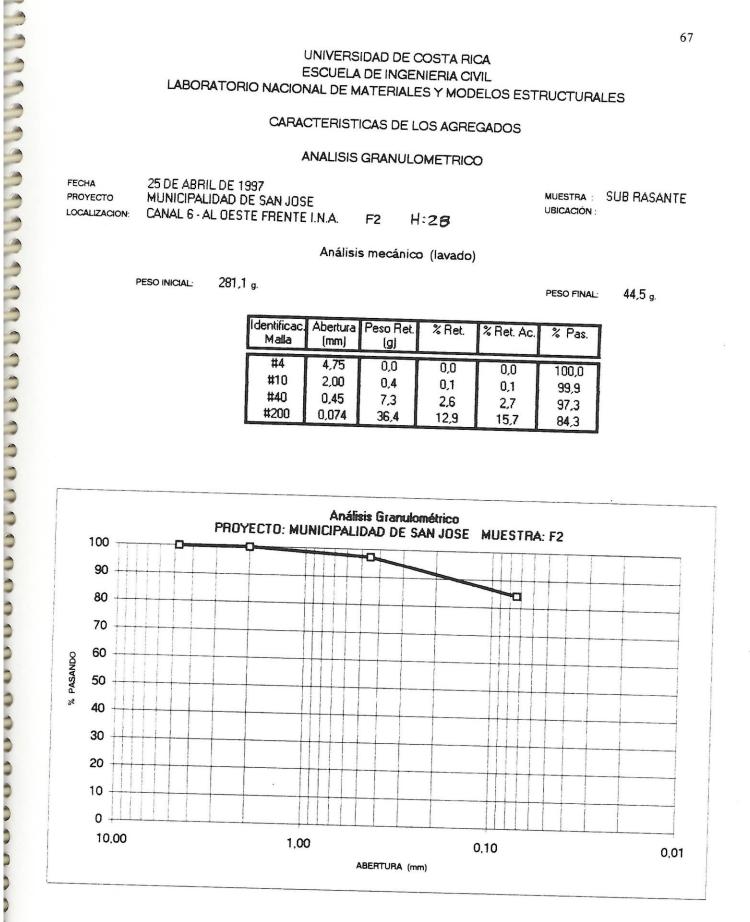
MUNICIPALIDAD DE SAN JOSE

UBICACIÓN :

CANAL 6 - AL OESTE FRENTE I.N.A.

F2 H:28

Análisis mecánico (lavado)


PESO INICIAL:

281,1 g.

PESO FINAL:

44,5 g.

ldentificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
#4	4,75	0,0	0,0	0,0	100,0
#10	2,00	0,4	0,1	0,1	99,9
#40	0,45	7,3	2,6	2,7	97,3
#200	0,074	36,4	12,9	15,7	84,3

CARACTERISTICAS DE LOS AGREGADOS

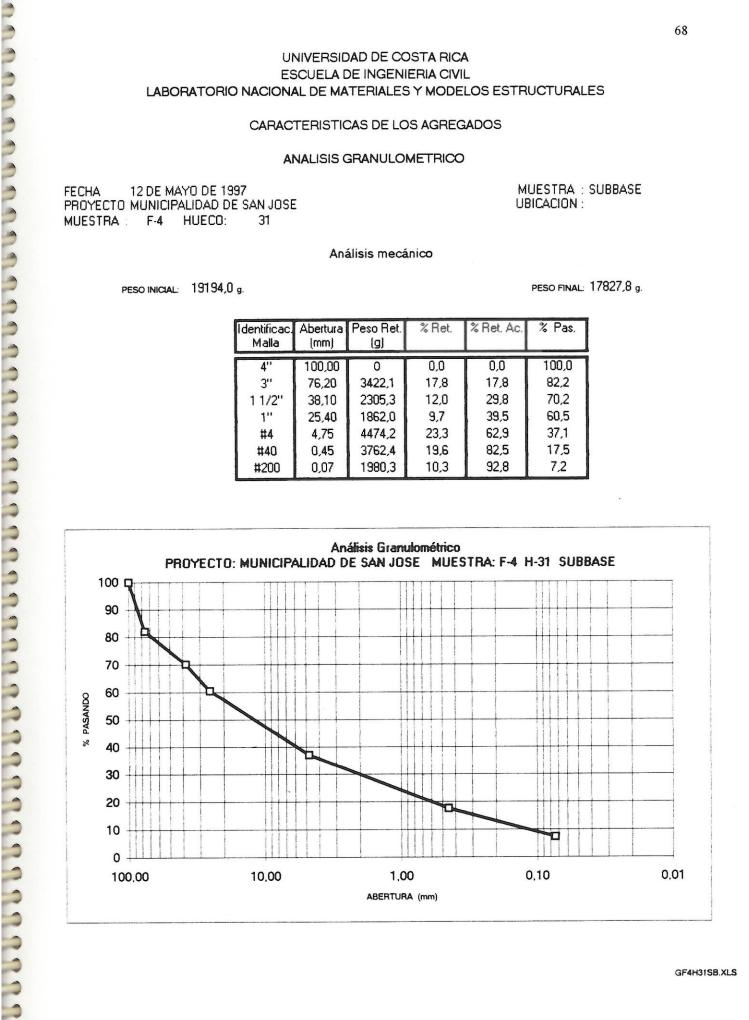
ANALISIS GRANULOMETRICO

FECHA 12 DE MAYO DE 1997 PROYECTO MUNICIPALIDAD DE SAN JOSE MUESTRA: SUBBASE

UBICACION:

MUESTRA: F-4

HUECO:


31

Análisis mecánico

PESO INICIAL: 19194,0 g.

PESO FINAL: 17827,8 g.

l dentificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
4''	100,00	0	0,0	0,0	100,0
3"	76,20	3422,1	17,8	17,8	82,2
1 1/2"	38,10	2305,3	12,0	29,8	70,2
1"	25,40	1862,0	9,7	39,5	60,5
#4	4,75	4474,2	23,3	62,9	37,1
#40	0,45	3762,4	19,6	82,5	17,5
#200	0,07	1980,3	10,3	92,8	7,2

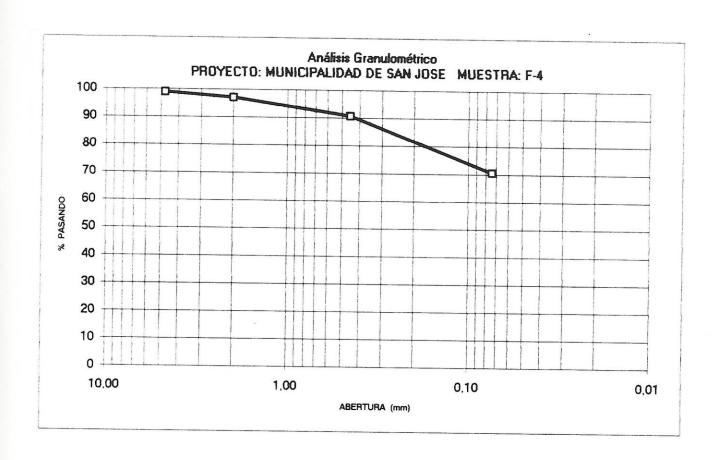
CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA 23 DE ABRIL DE 1997 PROYECTC MUNICIPALIDAD DE SAN JOSE MUESTRA F-4 HUECO: 31

MUESTRA: SUB RASANTE

UBICACION:


Análisis mecánico (lavado)

PESO INICIAL: 257,7 g.

PESO FINAL:

75,9 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
#4	4,75	2,8	1,1	1,1	98,9
#10	2,00	4,6	1,8	2,9	97,1
#40	0,45	16,7	6,5	9,4	90,6
#200	0,074	51,8	20,1	29,5	70,5

CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA

25 DE ABRIL DE 1997

PROYECTO MUNICIPALIDAD DE SAN JOSE

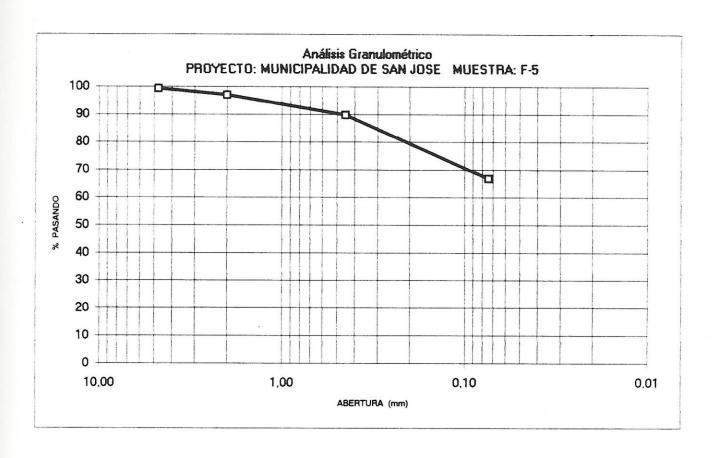
MUESTRA: F-5

HUECO: 51

MUESTRA: SUB RASANTE

UBICACION:

Análisis mecánico (lavado)


PESO INICIAL:

378,4 g.

PESO FINAL:

125,1 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
#4	4,75	2,6	0,7	0,7	99,3
#10	2,00	8,7	2,3	3,0	97,0
#40	0,45	27,4	7,2	10,2	89,8
#200	0,074	87,1	23,0	33,2	8,33

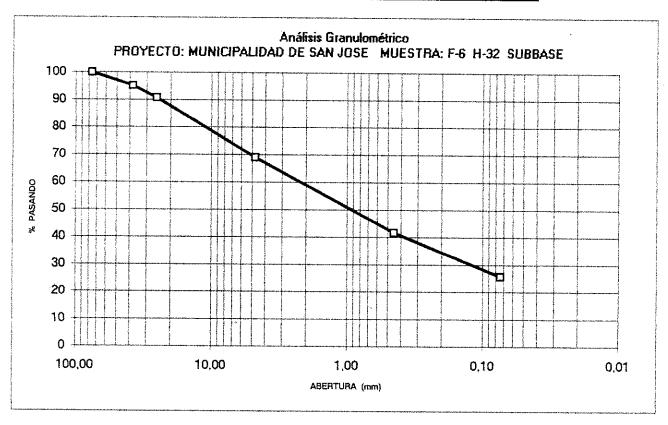
CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA 7 DE MAYO DE 1997

MUESTRA : SUBBASE

PROYECTO MUNICIPALIDAD DE SAN JOSE MUESTRA: F-6 HUECO: 32


UBICACIÓN:

Análisis mecánico

PESO INICIAL: 9308,0 g.

PESO FINAL 6964,8 g.

ldentificac. Malla	Abertura (mm)	Peso Ret. (g)	% Flet.	% Ret. Ac.	% Pas.
3" 1 1/2"	76,20 38,10	0,0 453,3	0,0	0,0	100,0
1"	25,40	405,4 405,4	4,9 4,4	4,9 9,2	95,1 90,8
#4 #40	4,75 0,45	2027,0 2549,2	21.8 27.4	31,0 50.4	69,0
#200	0,43	1477,2	15,9	58,4 74,3	41,8 25,7

CARACTERISTICAS DE LOS AGREGADOS

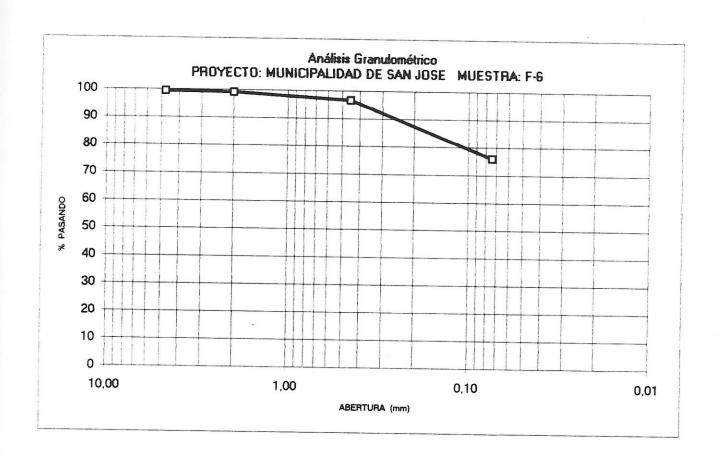
ANALISIS GRANULOMETRICO

FECHA 23 DE ABRIL DE 1997 PROYECTC MUNICIPALIDAD DE SAN JOSE MUESTRA F-6 HUECO: 3.2

MUESTRA : SUB RASANTE

UBICACION:

Análisis mecánico (lavado)


PESO INICIAL:

348,4 g.

PESO FINAL:

83,6 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
#4	4,75	2,1	0,6	0,6	99,4
#10	2,00	8,0	0,2	0,8	99,2
#40	0,45	8,8	2,5	3,4	96,6
#200	0,074	72,0	20,7	24,0	76,0

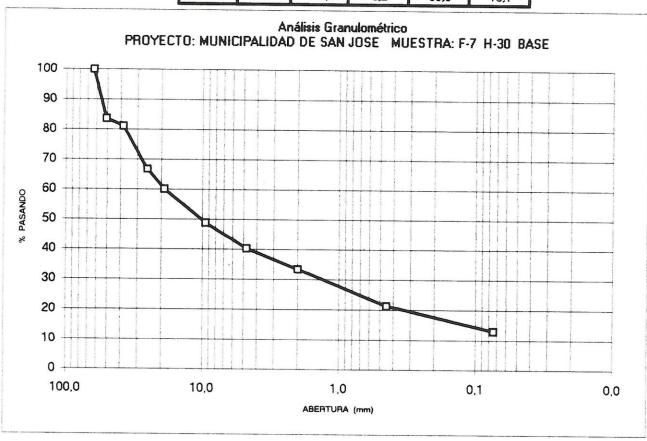
CARACTERISTICAS DE LOS AGREGADOS

ANALISIS GRANULOMETRICO

FECHA 22 DE MAYO DE 1197 PROYECTO MUNICIPALIDAD DE SAN JOSE

MUESTRA: BASE

UBICACION:


MUESTRA: F-7 HUECO:

Análisis mecánico (lavado)

PESO INICIAL: 3705,0 g.

PESO FINAL: 3226,9 g.

ldentificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
2 1/2"	63,0	0,0	0,0	0,0	100,0
2''	50,8	6,809	16,4	16,4	83,6
1 1/2"	38,1	91,4	2,5	18,9	81,1
1"	25,4	533,3	14,4	33,3	66,7
3/4"	19,1	244,3	6,6	39,9	60,1
3/8"	9,5	417,4	11,3	51,1	48,9
#4	4,75	318,8	8,8	59,8	40,2
#10	2,00	253,6	6,8	8,88	33,4
#40	0,45	447,7	12,1	78,7	21,3
#200	0,074	305,5	8,2	86,9	13,1

CARACTERISTICAS DE LOS AGREGADOS

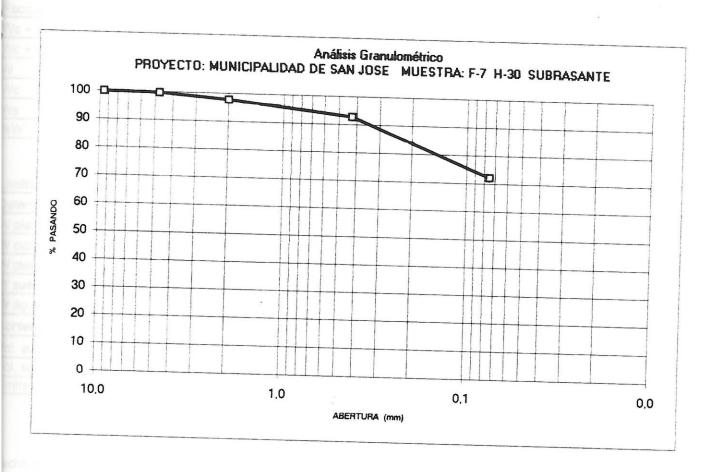
ANALISIS GRANULOMETRICO

FECHA 29 DE MAYO DE 1997 PROYECTO MUNICIPALIDAD DE SAN JOSE MUESTRA : F - 7 HUECO: H - 30

MUESTRA : SUBRASANTE

UBICACION:

Análisis mecánico (lavado)


PESO INICIAL:

392,8 g.

PESO FINAL:

111,3 g.

Identificac. Malla	Abertura (mm)	Peso Ret. (g)	% Ret.	% Ret. Ac.	% Pas.
3/8"	9,5	0,0	0,0	0,0	100,0
#4	4,8	1,1	0,3	0,3	99,7
#10	2,0	7,7	2,0	2,3	97,7
#40	0,43	20,1	5,1	7,4	92,6
#200	0,075	80,4	20,5	27,8	72,2

75

LIM-ATT.XLS

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

	TEC	DE I	4	-00	
LIMI	1-3		211	- 12 12	P W (-
-41011	1 -				-110

ASTM	D 423 ,	ASTM	D 424	y AA	ASHTO TE	89-94 , AASHTO T 90-94	
Proyecto: Munic	Lan	Jose				Muestra: Base Fecha: 14-497 ión Material: Lastre gus class Profundidad: Hueco: —	
Localización: #1 (H29)					Descripci	ión Material: Lastre que clavo	
Remitido por : ESp	25 Tu	4-39	-37 -3	ســـــــــــــــــــــــــــــــــــــ		Profundidad : Hueco	
				1			
Límite Líquido :							
Determinación Nº	1	2	3	4	5	Nomenclatura :	
Capsula Nº	-					Ww: Peso humedo de muestra	
Nº de golpes						Ws: Peso seco de muestra	
Wc + Ww (g)		<u> </u>	1			Wc: Peso de capsula	
Wc + Ws (g)			Y			W: Peso de humedad en muestra	
W (g)		X				%W: Porcentaje de humedad	
Wc (g)							
Ws (g)		1					
[%W (g)							
Límite Plástico :						Lĺmite Plástico	
Determinación Nº	1	2	3	4	7		
Recipiente Nº			1		1		
Wc + Ww (g)	1		1				
Wc + Ws (g)			1		% Humedad		
(g)		×					
Wc (g)		/			8		
Ws (g)		/			1		
%W (g)	1			*******	1		
		4	1	***********	15	17 19 21 23 25 27 29 31 33 35 N° Golpes	
Límite de contracción :						N° Goipes	
Determinación Nº		1	2	3	1 4		
W plato rec. + suelo hum	edo (a)						
W plato rec. + suelo seco					T		
W plato recubierto	(g)			- to prove			
W suelo seco, Ws	(g)					Límite Líquido :	
W agua, Ww	(g)					Límite Plastico :	
Contenido Agua Wo %						Indice Plasticidad :	
Vol. suelo húmedo, Vo	(cm ³)					Límite Contracción :	
Vol. suelo seco, V _r	(cm³)						
Límite de contracción, Lo							
LC = W ₀ - ((V ₀	, - Vf) * 1	00 / Ws)					
Fecha de Prueba :					Temperat	ura :	
Experimentador :				Revisado por :			

LIMITES DE ATTERBERG

FECHA

30 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

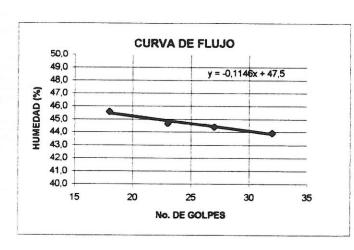
DESCRIPCION DE MATERIAL:

LIMO NEGRUSCO BAJA A MEDIA PLASTICIDAD

MUESTRA No: F/

HUECO No: 29

LOCALIZACION: COSTAD


COSTADO OESTE DE REHABILITACION

CARACTERIZACION DE MUESTRA: SUBRASANTE

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	32	27	23	18		RECIPIENTE No.	43	54	3
Wc + Ww (gr.)	31,97	32,48	38,16	33,82		Wc + Ww (gr.)	13.87	12.28	13.49
Wc + Ws (gr.)	27,98	28,25	33,59	29,05		Wc + Ws (gr.)	13,27	11,66	12.94
Ww	3,993	4,225	4,561	4,771		Ww .	0.599	0.616	0.552
Wc	18,89	18,73	23,38	18,58		Wc	11.1	9,453	10.89
₩s	9,094	9,516	10,21	10,47		Ws	2.169	2,206	
% W	43,9	44,4	44,7	45,6		% W	27,6	27.9	26,9
						PROMEDIO			27.5

RESUMEN

LIMITE LIQUIDO	44,6
LIMITE PLASTICO	27,5
NDICE DE PLASTICIDAD	17,2

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

ASTM D 423 Proyecto: Munic S	IO NACION ASTM	SCUELA D AL DE MA LIMITES D 424 y	DE ATTERBE AASHTO	A CIVIL MODELOS ESTRUCTURALES RG T 89-94 , AASHTO T 90-94
Romitide and	Do Cicnic	Jip-Haci	Les to Descr	ripción Material: <u>fartre y</u>
Remitido por : Espisor	15-140	5-15-14	1.6-15 am	Profundidad Hueso
Límite Líquido :		,		Tidoco
Determinación Nº 1	2	3	4 5	Nomenclatura :
Capsula Nº				3 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
Nº de golpes	N			- 1 330 Hamedo de Muestra
Wc + Ww (g)			/	Ws: Peso seco de muestra
Wc + Ws (g)	1	\		Wc : Peso de capsula
W (g)		X		W: Peso de humedad en muestra
Wc (g)		/		%W: Porcentaje de humedad
Ws (g)	-			4
[%W (g)	-		-	_
Límite Plástico : Determinación Nº 1	2	3	4	Límite Plástico
Recipiente Nº		-		
Wc + Ww (g)	1	-/-		
Wc + Ws (g)		/	Humedad	
W (g)	 		- E	
Wc (g)	+/+	$\overline{}$	- %	
(Ws (g)	1/-	-		
%W (g)	+			
Límite de contracción :				15 17 19 21 23 25 27 29 31 33 35 No Golpes
Determinacion Nº	1	2	3 4]
W plato rec. + suelo humedo (g)		_	- 4	1
W plato rec. + suelo seco (g)	1			A 3.
W plato recubierto (g)	1			
W suelo seco, Ws (g)				15-4-15
W agua. Ww (g)				Límite Líquido :
Contenido Agua Wo %	 			Límite Plastico :
Vol. suelo húmedo, V ₀ (cm ³)	+	-+		Indice Plasticidad :
Vol. suelo seco. V, (cm³)	 			Límite Contracción :
Limite de contracción. LC =	-			
LC = W ₀ - ((V ₀ - Vf) * 10				· ·
Fecha de Prueba : 7-5	1/	-	Tempera	tura :
Experimentador :			Revisado	por:
				LIM-ATT.XLS

LIMITES DE ATTERBERG

FECHA

25 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

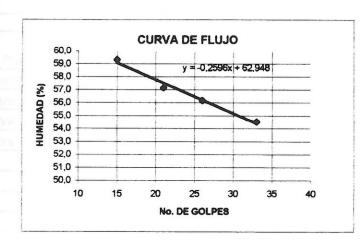
MUESTRA No:

SUELO LIMO ARCILLOSO COLOR NEGRUSCO

LOCALIZACION:

DE CANAL 6 AL OESTE FRENTE AL I.N.A.

CARACTERIZACION DE MUESTRA:


LIMITE LIQUIDO

SUBRASANTE

LIMITE PLASTICO

HUECO No: 28

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	33	26	21	15		RECIPIENTE No.	43	36	54
Wc + Ww (gr.)	36,03	31,64	32,47	32,52		Wc + Ww (gr.)	14.53	12.37	12.19
Wc + Ws (gr.)	31,53	26,17	27,38	27,44		Wc + Ws (gr.)	13,72		11.53
Ww	4,497	5,466	5,088	5,087		Ww	0.818	0.73	0.659
Wc	23,28	16,44	18,48	18,86		Wc	11.1	9.354	9.453
₩s	8,249	9,731	8,905	8,578		₩s	2.612	2,283	2.073
% W	54,5	56,2	57,1	59,3		% W	31,3	32,0	31,8
						PROMEDIO			31.6

RESUMEN

LIMITE LIQUIDO	56,5
LIMITE PLASTICO	31,6
NDICE DE PLASTICIDAD	24,8

UM-ATT.XLS

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

LIMITES DE ATTERBERG

ASTM D 423 , ASTM D 424 y AASHTO T 89-94 , AASHTO T 90-94

Proyecto: Munic	. 5	ando	se			Muestra: Subbase Fecha: 15-4-97
Localización :	F-4	(431)			Descripc	ción Material: Lastre quis
Remitido por : Est	2000	36-33	- 37-	35 cm	ns	Profundidad : Hueco :
Límite Líquido :						
Determinación Nº	1	2	3	4	5	Nomenclatura :
Capsula Nº				0		Ww : Peso humedo de muestra
Nº de golpes				7		Ws : Peso seco de muestra
Wc + Ww (g)		K	/			Wc : Peso de capsuia
Wc + Ws (g)	ļ		/	İ		W : Peso de humedad en muestra
₩ (g)						%W: Porcentaje de humedad
Wc (g)	1					,
Ws (g)	1	1/		Ú.		
%W (g)						
límite Plástico :						Lĺmite Plástico
Determinación Nº	1	2	3	4	7 7	
Recipiente Nº		1		1	1 -	
Wc + Ww (g)			/	l i	9	
Wc + Ws (g)				1	% Humedad	
W (g)		X			1 1 2 -	
Wc (g)				/	*	
Ns (g)		/			1 1	
%W (g)		Y				
	/				1	5 17 19 21 23 25 27 29 31 33 35 Nº Goipes
imite de contracción :		·		,		
Determinación Nº		1 1	2	3	4	
N plato rec. + suelo hume	edo (g)	1				
V plato rec. + suelo seco	(g)					
N plato recubierto	(g)					
V suelo seco, Ws	(g)					Límite Líquido :
Wagua. Ww	(g)					Límite Plastico :
Contenido Agua Wo %			-			Indice Plasticidad :
yol. suelo húmedo, Vo	(cm ³)					Límite Contracción :
ol. suelo seco. V.	(cm³)					
ímite de contracción. LO	; =					•
LC = W ₂ - ((V ₂	- Vf) * 1	00 / Ws)				*

Temperatura : _____

Fecha de Prueba :

LIMITES DE ATTERBERG

FECHA

0

28 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

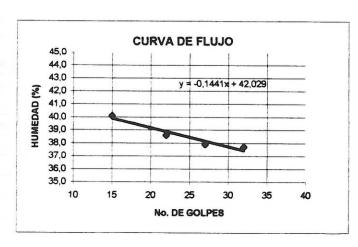
DESCRIPCION DE MATERIAL:

SUELO LIMO ARCILLOSO CAFE OSCURO BAJA A MEDIA PLASTICIDAD

F-4

HUECO No: 31

MUESTRA No: LOCALIZACION:


CARACTERIZACION DE MUESTRA:

SUBRASANTE

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	32	27	22	15		RECIPIENTE No.	3	43	54
Wc + Ww (gr.)	31,71	32,89	32,73	37,33		Wc + Ww (gr.)	14.1		12.78
Wc + Ws (gr.)	27,53	28,93	28,87	33,31		Wc + Ws (gr.)	13,5	13,95	12.18
Ww .	4,179	3,96	3,863	4,021		Ww	0,599	0,639	0.607
Wc	16,44	18,48	18,86	23,28		Wc	10,89	11,1	9,453
Ws	11,08	10,45	10,01	10,03		₩s	2,615	2.85	2.723
% W	37,7	37,9	38,6	40,1		% W	22,9	22,4	22,3
						PROMEDIO			22.5

RESUMEN

LIMITE LIQUIDO	38,4
LIMITE PLASTICO	22,5
INDICE DE PLASTICIDAD	15,9

UM-ATT.XLS

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

ASTM D 423	ESCUEL NACIONAL DE LIMIT ASTM D 424	ES DE ATTERBE	A CIVIL 81 MODELOS ESTRUCTURALES ERG T 89-94 AASHTO T 90-94
			, »
Proyecto: Munic	un Jose		Muestra Sub Vase Fecha: 24-4-97
Localización : F -	-5 (HSI)	Desc	Muestra Sub vase Fecha: 24-4-97 pripción Material: Lastre gus
Remitido por : Espes on :	18-17-18-	18 cm	Profundidad : Hueco :
Límite Líquido :			nueco
Determinación Nº 1	2 3	4 5	Namanalat
Capsula Nº		7	Nomenclatura :
Nº de golpes			Ww : Peso humedo de muestra
Wc + Ww (g)			Ws : Peso seco de muestra
Wc + Ws (g)			Wc: Peso de capsula
√ (g)		1	W: Peso de humedad en muestra
Vc (g)			%W: Porcentaje de humedad
Ws (g)			
1%W (g)			
Zímite Plástico :			Lĺmite Plástico
eterminación Nº 1	2 3	4	TIIIIII
Recipiente Nº			
Vc + Ww (g)		2	
Wc + Ws (g)		Humedad	
∨ (g)		1 1	
Wc (g)		8	
Ws (g)			+++++++++++++++++++++++++++++++++++++++
%W (g)			
<u>límite de contracción :</u>			15 17 19 21 23 25 27 29 31 33 35
Determinación Nº	1 2	3 4	
V plato rec. + suelo humedo (g)		1	1
V plato rec. + suelo seco (g)			
W plato recubierto (g)			1 .
v suelo seco, Ws (g)			Límite Líquido :
Vagua. Ww (g)			Límite Plastico :
ontenido Agua W ₀ %			Indice Plasticidad :
(ol. suelo húmedo, V ₀ (cm ³)			Límite Contracción :
(ol. suelo seco. V _r (cm ³)			Emilie Condaction
ímite de contracción. LC =			1.00
echa de Prueba : 1/(1) * //	100/Ws)	Temper	atura :

Revisado por :

LIMITES DE ATTERBERG

FECHA

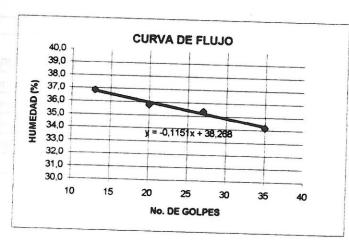
23 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

MUESTRA No: LOCALIZACION: SUELO LIMO ARCILLOSO CAFE CLARO


HUECO No: 51

CARACTERIZACION DE MUESTRA: SUBRASANTE

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	4	•	_						
		2	3	4	5	DETERMINACION No.	1	2	•
No. DE GOLPES	35	27	20	13				~	3
Wc + Ww (gr.)	32.14	35.89	31,47	32,26		RECIPIENTE No.	3	37	57
Wc + Ws (gr.)		,				Wc + Ww (gr.)	13,78	12.16	14.22
Ww			28,15			Wc + Ws (gr.)	13,24		13,63
	3,374	4,484	3,324	4,256		Ww			
₩c			18,86	16.44					0,594
₩s	9.874		9,289			Wc	10,89	9,094	11.05
% W				11,56		₩s			2,572
70 **	34,2	35,4	35,8	36,8		% W			
							23,0	23,7	23,1
						PROMEDIO			23.4

RESUMEN

LIMITE LIQUIDO	35,4
LIMITE PLASTICO	23,4
INDICE DE PLASTICIDAD	12,0

UM-ATT.XLS

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

LIMITES DE ATTERBERG

ASTIVI D						69-94 , AASHTO 1 90-94
Provecto Maric	. Dan	r from	5			Musetraub base Foods 5-4-57
Proyecto: Munic. Sandre Localización: F-6 (H3Z) Remitido por: Espero 15.0 am						Muestraub base Fecha: 5-4-57 ción Material: Lastre Verduyes Profundidad: Hueco:
Remitido por : Esp	es5	15.00	w		Восопр	Profundidad Hueco
<u> </u>						11000
Límite Líquido :						
Determinación Nº	1 1	2	3	4	5	Nomenclatura :
Capsula Nº						Ww : Peso humedo de muestra
N° de goipes					************	Ws: Peso seco de muestra
Wc + Ww (g)						Wc: Peso de capsula
Wc + Ws (g)			X			W: Peso de humedad en muestra
W (g)						%W: Porcentaje de humedad
Wc (g)	İ					7000 Forestraje de Hamedad
Ws (g)						
%W (g)						
Límite Plástico :	•	·				LÍmite Plástico
Determinación Nº	1 1	2	3	4		
Recipiente Nº						
Wc + Ww (g)					lad	
Wc + Ws (g)					шес	
W (g)			\times		% Humedad	+ 1 // 1 3 1/1 1 1 1
Wc (g)					*	
Ws (g)		/				
1%W (g)						
9						15 17 19 21 23 25 27 29 31 33 35 N° Golpes
Límite de contracción :						_
Determinación Nº		1	2	3	4	
W plato rec. + suelo hume	do (g)					
W plato rec. + suelo seco	(g)					
W plato recubierto	(g)					
W suelo seco, Ws	(g)					Límite Líquido :
W agua, Ww	(g)					Límite Plastico :
Contenido Agua Wo %						Indice Plasticidad :
√ol. suelo húmedo, Vo	(cm^3)					Límite Contracción :
√ol. suelo seco, V₁	(cm³)					
	=					_
⇒ LC = W₀ - ((V₀	- Vf) * 1	00 / Ws)				•
2-1-1-2-1-0-	0-	,		20		
Fecha de Prueba : 1	7	<u>'</u>				atura :
Experimentador: ///	ma				Revisad	o por :

Revisado por :

LIMITES DE ATTERBERG

FECHA

25 DE ABRIL DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

SUELO LIMO ARCILLOSO CAFE OSCURO

MUESTRA No:

F-6

HUECO No: 32

LOCALIZACION:

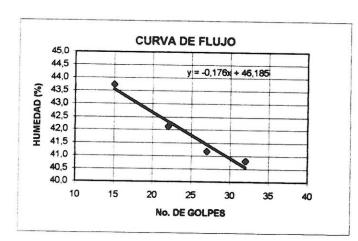
CARACTERIZACION DE MUESTRA: SUBRASANTE

LIMITE LIQUIDO

DETERMINACION No. 1 2 3 No. DE GOLPES 32 27 22 15 Wc + Ww (gr.) 36,13 35,45 34,94 37,17 32,41 30,53 30,14 32,98 3,723 4,919 4,803 4,195

Wc + Ws (gr.) Ww Wc ₩s

% W


23,28 18,58 18,73 23,38 9,123 11,95 11.4 9,593 40,8 41,2 42.1 43.7

LIMITE PLASTICO

DETERMINACION No.	1	2	3
RECIPIENTE No.	3	43	54
Wc + Ww (gr.)	14,132	14,522	12,359
Wc + Ws (gr.)	13,439	13,794	11,730
Ww	0,693	0,728	0,629
Wc	10,885	11,103	9,453
₩s	2,554	2,691	2,277
% W	27,1	27,1	27,6
PROMEDIO			

PROMEDIO

27.3

RESUMEN

LIMITE LIQUIDO 41,8 LIMITE PLASTICO 27,3 INDICE DE PLASTICIDAD 14,5

LIMITES DE ATTERBERG

FECHA

22 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

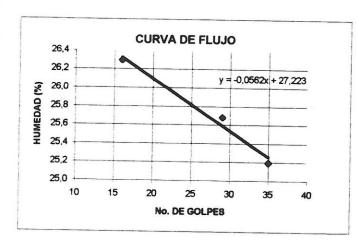
DESCRIPCION DE MATERIAL:

LASTRE GRIS CLARO

MUESTRA No:

LOCALIZACION:

CARACTERIZACION DE MUESTRA: BASE


HUECO No:

H-30

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No.	1	2	3	4	5	DETERMINACION No.	1	2	3
No. DE GOLPES	35	29	16	23		RECIPIENTE No.	53	57	
Wc + Ww (gr.)	31,97	30,41	35,23	35,5		Wc + Ww (gr.)	14.7		54 13,23
Wc + Ws (gr.)	29,26	27,56	32,77	30,43		Wc + Ws (gr.)	14.06		12,54
Ww	2,716	2,854	2,463	5,067		Ww (g.:)	0.641	0.638	0.697
Wc	18,48	16,44	23,4	18,58		₩c	11,19	11,05	
₩s	10,78	11,11	9,367	11,85		₩s	2,875	2.886	3.084
% W	25,2	25,7	26,3	42.7		% W	22,3	22,1	22.6
						PROMEDIO			22.3

RESUMEN

LIMITE LIQUIDO	25,8
LIMITE PLASTICO	22,3
INDICE DE PLASTICIDAD	3,5

LIMITES DE ATTERBERG

FECHA

19 DE MAYO DE 1997

PROYECTO

MUNICIPALIDAD DE SAN JOSE

DESCRIPCION DE MATERIAL:

LIMO ARCILLOSO CAFE OSCURO

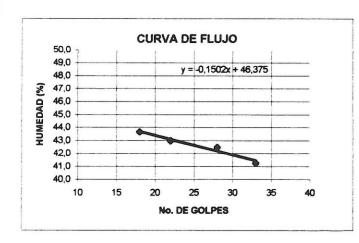
MUESTRA No:

F-7

LOCALIZACION:

CARACTERIZACION DE MUESTRA:

SUBRASANTE


HUECO No:

: H-30

LIMITE LIQUIDO

LIMITE PLASTICO

DETERMINACION No. No. DE GOLPES Wc + Ww (gr.) Wc + Ws (gr.) Ww Wc Ws	1 33 30,9 27,34 3,557 18,71 8,625	4,521 23,28 10,64	30,09 4,918 18,65 11,45	18,73 11,1	5	DETERMINACION No. RECIPIENTE No. Wc + Ww (gr.) Wc + Ws (gr.) Ww Wc Ws	0,636 10,89 2,364	13,29 0,591 11,05 2,24	0,625 11,15 2,351
% W	41,2	42,5	43,0	43,6		% W	26,9	26,4	26,6
						PROMEDIO			26.6

RESUMEN

LIMITE LIGUIDO	42,6
LIMITE PLASTICO	26,6
INDICE DE PLASTICIDAD	16,0

ANEXO 3

PERFIL DE DEFLEXIONES

ZONA : LA URUCA RUTA : F1

PESO DEL EJE : 8200 Kg PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA: 21-4-97 PRECISION DEL MICROMETRO : 0.02mm

DISTANCIA: 1610m MEDICIONES CADA 100 METROS

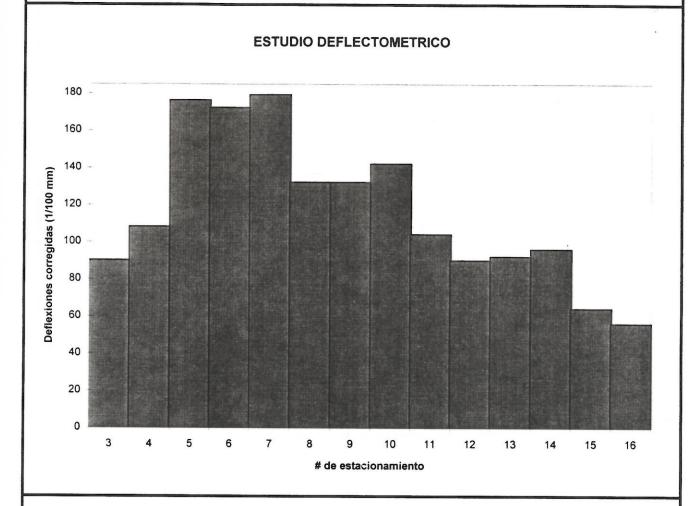
ESPESOR DE CAPA ASFALTICA (cm): 7

PUNTO	DEFLEXION	DEFLEXION	TEMPER
N ^o	0.01mm	mm*10 ⁻²	PAVIM (°C)
1			
2			
3	45	90	40
4	54	108	40
5	88	176	40
6	86	172	40
7	89,5	179	40
8	66	132	41
9	66	132	41
10	71	142	41
11	52	104	40
12	45	90	40
13	46	92	39
14	48	96	39
15	32	64	38
16	28	56	37

PROMEDIO (D):

116,64

DESV. EST. (σ):


ZONA: LA URUCA

RUTA:

DISTANCIA: 1610m

MEDICIONES CADA 100 METROS

F1

FECHA: 21-4-97 PROMEDIO (D): 116,64 DESV. EST. (σ): 39,93 MIN 56 $D - 2\sigma$ 36,78 $D + 1.282\sigma$ 167,83 $D + 2\sigma$ 196,50 MAX 179

ZONA : LA URUCA

RUTA: F1

PESO DEL EJE : 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

20-6-97

PRECISION DEL MICROMETRO: 0.02mm

DISTANCIA: 1610m

MEDICIONES CADA 100 METROS

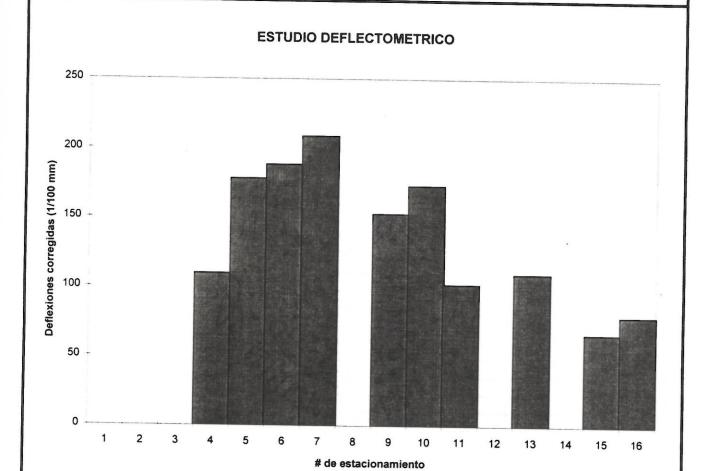
ESPESOR DE CAPA ASFALTICA (cm): 7

PUNTO	DEFLEXION	DEELEVION	TEL 1050
N ⁰		DEFLEXION	TEMPER
	0.01mm	mm*10 ⁻²	PAVIM (°C)
1			
2			
3			
4	21,5	109	26
5	35	178	26
6	37	188	26
7	41	208	27
8			
9	30	152	27
10	34	173	27
11	20	102	28
12	17		
13	21,5	109	28
14			20
15	13	66	29
16	15,5	79	29
			29
	`		

PROMEDIO (D):

136,40

DESV. EST. (σ):


ZONA: LA URUCA

RUTA:

DISTANCIA: 1610m

MEDICIONES CADA 100 METROS

F1

FECHA: 20-6-97 PROMEDIO (D): 136,40 DESV. EST. (σ): 49,53 MIN 66 D - 2σ 37,34 D + 1.282σ 199,89 $D + 2\sigma$ 235,46 MAX 208

ZONA : LA URUCA

RUTA: F2

PESO DEL EJE : 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

21-4-97

PRECISION DEL MICROMETRO: 0.02mm

DISTANCIA: 2000m

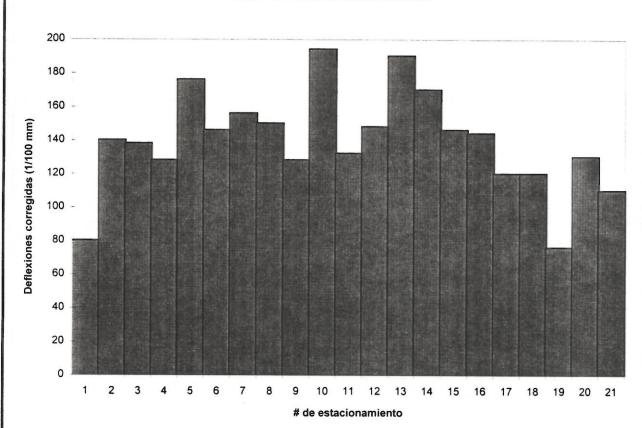
MEDICIONES CADA 100 METROS

ESPESOR DE CAPA ASFALTICA (cm): 9,5

PUNTO	DEFLEXION	DEFLEXION	TEMPER
N ^o	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	40	80	34
2	70	140	34
3	69	138	34
4	64	128	35
5	88	176	35
6	73	146	36
7	78	156	36
8	75	150	36
9	64	128	37
10	97	194	38
11	66	132	39
12	74	148	40
13	95	190	40
14	85	170	40
15	73	146	40
16	72	144	40
17	60	120	40
18	60	120	41
19	38	76	41
20	65	130	41
21	55	110	41

PROMEDIO (D): DESV. EST. (σ): 139,14

ZONA: LA URUCA


RUTA:

F2

DISTANCIA: 2000m

MEDICIONES CADA 100 METROS

ESTUDIO DEFLECTOMETRICO

FECHA: 21-4-97 PROMEDIO (D): 139,14 DESV. EST. (σ): 29,96 MIN 76 $D - 2\sigma$ 79,22 $D + 1.282\sigma$ 177,56 $D + 2\sigma$ 199,07 MAX 194

ZONA : LA URUCA

RUTA: F2

PESO DEL EJE : 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

20-6-97

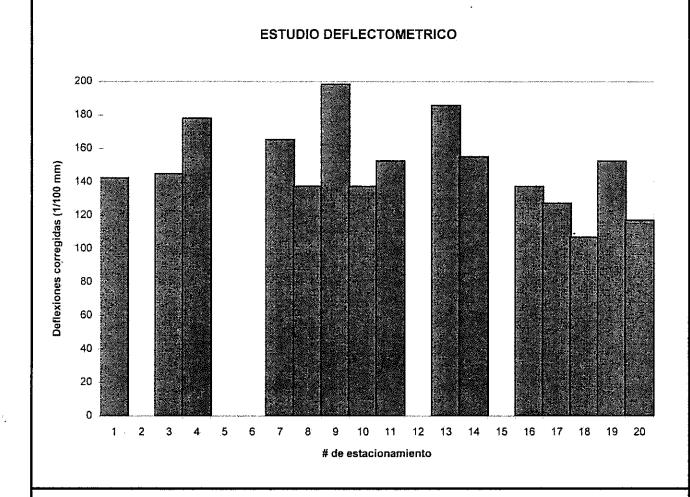
PRECISION DEL MICROMETRO: 0.02mm

DISTANCIA: 2000m

MEDICIONES CADA 100 METROS

ESPESOR DE CAPA ASFALTICA (cm): 9,5

PUNTO	DEFLEXION	DEFLEXION	TEMPER
No	0.01mm	mm*10 ⁻²	PAVIM (°C)
1			
2	28	142	31
3	26	4	
4	28,5	145	31
5	35	178	31
6			T. 1. T. T.
7	27		
8	32,5	165	31
9	27	137	31
10	39	198	31
11	27	137	32
12	30	152	32
13			
14	36,5	185	32
15	30,5	155	32
16			
17	27	137	32
18	25	127	32
19	21	107	32
20	30	152	32
21	23	117	32


PROMEDIO (D):

DESV. EST. (σ):

149,01

ZONA: LA URUCA RUTA: F2

DISTANCIA: 2000m MEDICIONES CADA 100 METROS

FECHA: 20-6-97 PROMEDIO (D): 149,01 DESV. EST. (o): 24,90 107 MIN $D - 2\sigma$ 99,22 $D + 1.282\sigma$ 180,93 $D + 2\sigma$ 198,81 MAX 198

ZONA : LA URUCA RUTA : F3

PESO DEL EJE : 8200 Kg PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA: 21-4-97 PRECISION DEL MICROMETRO : 0.02mm

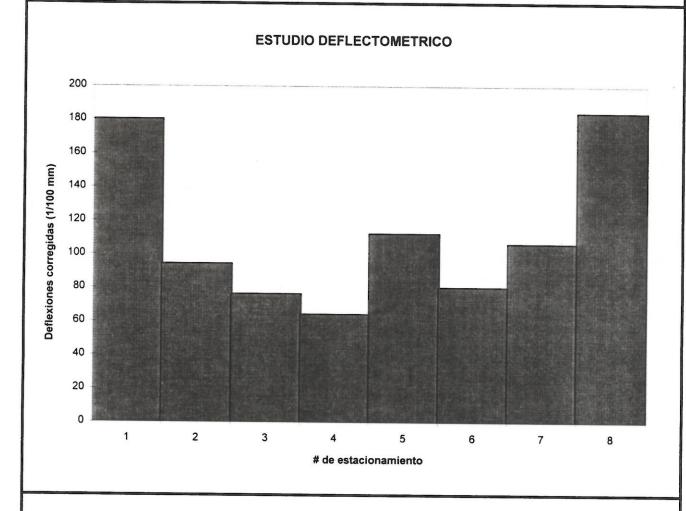
DISTANCIA: 730m MEDICIONES CADA 100 METROS

ESPESOR DE CAPA ASFALTICA (cm): 3,5

PUNTO	DEFLEXION	DEFLEXION	TEMPER
N ⁰	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	90	180	38
2	47	94	38
3	38	76	38
4	32	64	38
5	56	112	37
6	40	80	37
7	53	106	37
8	92	184	37
~			
	-		

PROMEDIO (D): DESV. EST. (σ): 112,00 45,97

ZONA


LA URUCA

RUTA

F3

DISTANCIA: 730m

MEDICIONES CADA 100 METROS

FECHA: 21-4-97 PROMEDIO (D): 112,00 DESV. EST. (σ): 45,97 MIN 64 D - 2σ 20,06 $D + 1.282\sigma$ 170,93 $D + 2\sigma$ 203,94 MAX 184

ZONA : LA URUCA

RUTA: F4

PESO DEL EJE : 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

21-4-97

PRECISION DEL MICROMETRO: 0.02mm

DISTANCIA: 820m

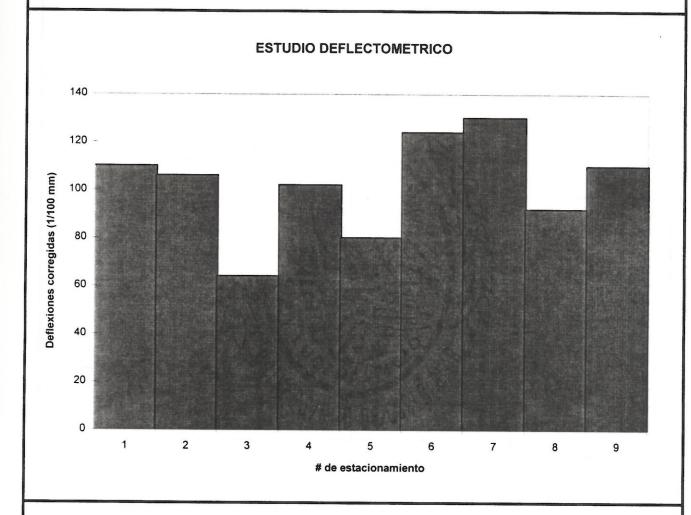
MEDICIONES CADA 100 METROS

ESPESOR DE CAPA ASFALTICA (cm): 4,0

PUNTO	DEFLEXION	DEFLEXION	TEMPER
No	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	55	110	36
2	53	106	36
3	32	64	36
4	51	102	36
5	40	80	35
6	62	124	35
7	65	130	35
8	46	92	35
9	55	110	35
		111111111111111111111111111111111111111	

PROMEDIO (D):

102,00


DESV. EST. (σ):

ZONA: LA URUCA

RUTA: F4

DISTANCIA: 820m

MEDICIONES CADA 100 METROS

FECHA: 21-4-97 PROMEDIO (D): 102,00 DESV. EST. (σ): 20,74 MIN 64 $D - 2\sigma$ 60,53 D + 1.282σ 128,58 $D + 2\sigma$ 143,47 MAX 130

ZONA : LA URUCA

RUTA: F5

PESO DEL EJE : 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

22-4-97

PRECISION DEL MICROMETRO : 0:02mm

DISTANCIA: 810m

MEDICIONES CADA 100 METROS

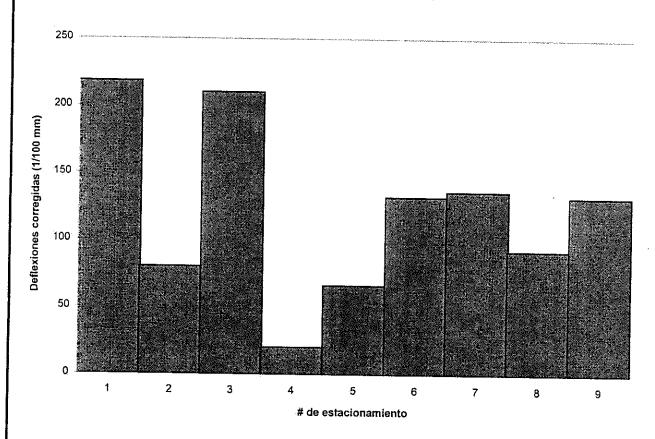
ESPESOR DE CAPA ASFALTICA (cm): 1,7

PUNTO	DEFLEXION	DEFLEXION	TEMPER
No	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	109	218	36
2	40	80	
3	105	210	36
4	10	20	37
5	33	66	37
6	66	132	37
7	68	136	38
8	46	92	38
9	66	132	39
		132	39
			·· · · · · · · · · · · · · · · · · · ·
			77
<u> </u>			
			
			, <u>, , , , , , , , , , , , , , , , , , </u>
			· · · · · · · · · · · · · · · · · · ·
			<u> </u>
			· · · · · · · · · · · · · · · · · · ·

PROMEDIO (D): DESV. EST, (σ):

120,67

ZONA: LA URUCA


RUTA:

F5

DISTANCIA: 810m

MEDICIONES CADA 100 METROS

ESTUDIO DEFLECTOMETRICO

FECHA: 22-4-97 PROMEDIO (D): 120,67 DESV. EST. (o): 64,75 MIN 20 $D-2\sigma$ -8,84 $D + 1.282\sigma$ 203,68 $D + 2\sigma$ 250,17 MAX 218

ZONA : LA URUCA

RUTA: F6

PESO DEL EJE : 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

22-4-97

PRECISION DEL MICROMETRO: 0.02mm

DISTANCIA: 1150m

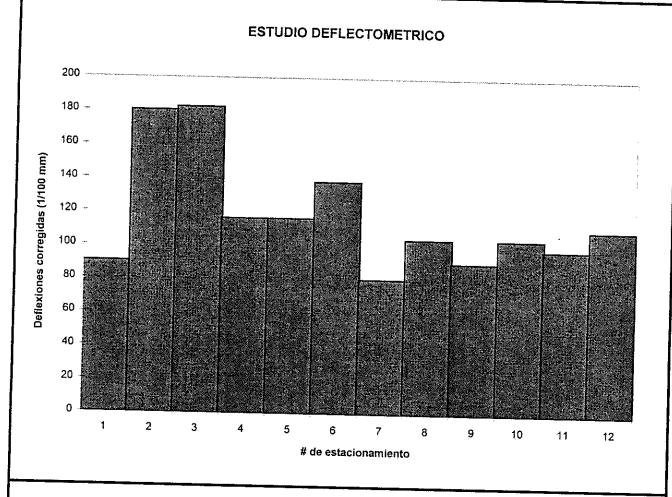
MEDICIONES CADA 100 METROS

ESPESOR DE CAPA ASFALTICA (cm): 4

PUNTO	DEFLEXION	DEFLEXION	TEMPER
N ₀	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	45	90	29
2	90	180	29
3	91	182	30
4	58	116	30
5	58	116	31
6	69	138	31
7	40	80	31
8	52	104	32
9	45	90	33
10	52	104	34
11	49	98	35
12	55	110	36
		rs.:	
		() () () () () () () () () ()	
			. · · · · · · · · · · · · · · · · · · ·

PROMEDIO (D):

117,33


DESV. EST. (σ):

ZONA: LA URUCA

RUTA: F6

DISTANCIA: 1150m

MEDICIONES CADA 100 METROS

FECHA: 22-4-97 PROMEDIO (D): 117,33 DESV. EST. (o): 33,32 MIN 80 D - 2σ 50,70 D + 1.282σ 160,05 $D + 2\sigma$ 183,97 MAX 182

ZONA : LA URUCA RUTA : F7

PESO DEL EJE : 8200 Kg PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA: 22-4-97 PRECISION DEL MICROMETRO : 0.02mm

DISTANCIA: 860m MEDICIONES CADA 100 METROS

ESPESOR DE CAPA ASFALTICA (cm): 6,5

Proposition of the second of t

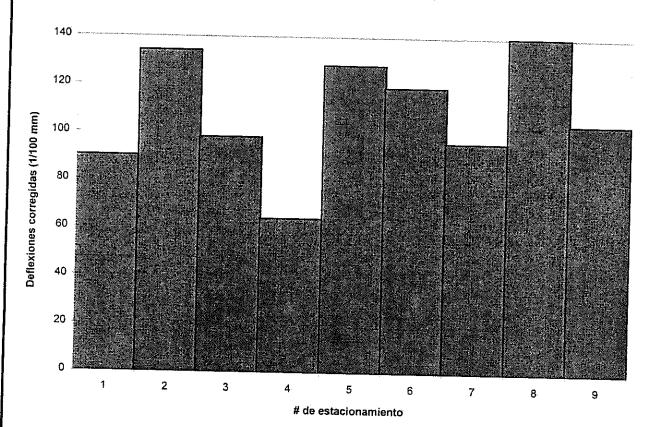
PUNTO	DEFLEXION	DEFLEXION	TEMPER
N ₀	0.01mm	mm*10 ⁻²	PAVIM (OC)
1	45	90	39,5
2	67	134	39
3	49	98	38
4	32	64	38
5	64	128	37
6	59,5	119	37
7	48	96	36
8	70	140	36
9	52	104	35
·····			
····			
·			

PROMEDIO (D): DESV. EST. (g):

108,11

ZONA:

LA URUCA


RUTA:

F7

DISTANCIA: 860m

MEDICIONES CADA 100 METROS

ESTUDIO DEFLECTOMETRICO

FECHA: PROMEDIO (D):

22-4-97

DESV. EST. (σ):

108,11

DESV. EST. (σ):

24,34

MIN D - 2₀ 64

D + 1.282_o

59,42

5

139,32

D + 2σ

156,80

MAX

140

ZONA : LA URUCA

RUTA: F8

PESO DEL EJE : 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

21-4-97

PRECISION DEL MICROMETRO: 0.02mm

DISTANCIA: 180m

MEDICIONES CADA 100 METROS

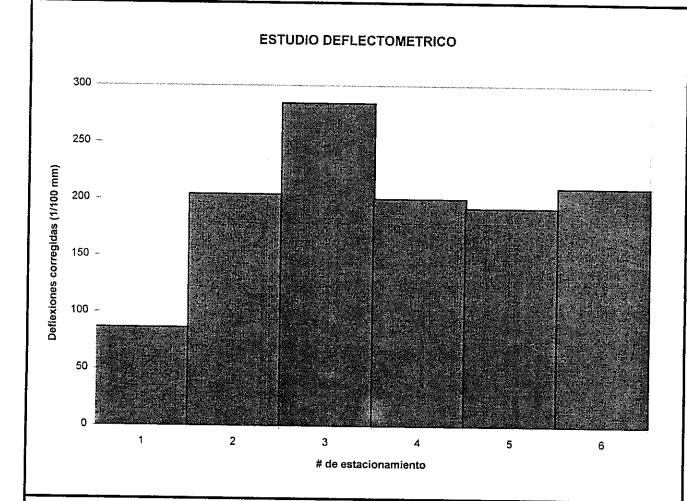
ESPESOR DE CAPA ASFALTICA (cm): 5,5

PUNTO	DEFLEXION	DEFLEXION	721
N ^o	0.01mm	mm*10 ⁻²	TEMPER
11	43		PAVIM (°C
3	102	86	40
	142	204	40
4	100	284	39
5	96	200	39
6	105	192	38
	100	210	38
			
			
			-
			· ····································

PROMEDIO (D):

DESV. EST. (σ):

196,00


ZONA: LA URUCA

RUTA:

DISTANCIA: 180m

MEDICIONES CADA 30 METROS

F8

FECHA: 21-4-97 PROMEDIO (D): 196,00 DESV. EST. (σ): 63,46 MIN 86 $D - 2\sigma$ 69,08 $D + 1.282\sigma$ 277,36 D + 2σ 322,92 MAX 284

ZONA: LA URUCA

RUTA: F9

PESO DEL EJE: 8200 Kg

PRESION DE LLANTAS: 5,6 Kg/cm²

FECHA:

21-4-97

PRECISION DEL MICROMETRO: 0.02mm

DISTANCIA: 90m

MEDICIONES CADA 100 METROS

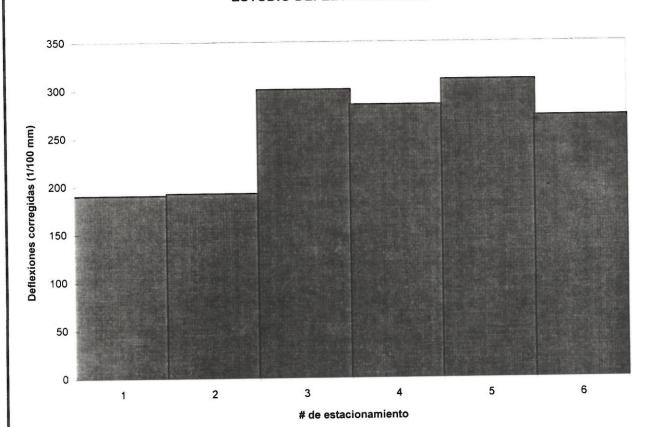
ESPESOR DE CAPA ASFALTICA (cm):

PUNTO	DEFLEXION	DEFLEXION	TEMPER
N⁵	0.01mm	mm*10 ⁻²	PAVIM (°C)
1	95	190	40
2	96	192	40
3	150	300	40
4	142	284	40
5	155	310	40
6	136	272	40
	, , , , , , , , , , , , , , , , , , ,	, -	
Ma			

PROMEDIO (D):

258,00

DESV. EST. (σ):


ZONA: LA URUCA

RUTA: F9

DISTANCIA: 90m

MEDICIONES CADA 30 METROS

ESTUDIO DEFLECTOMETRICO

21-4-97 FECHA: 258,00 PROMEDIO (D): 53,52 DESV. EST. (σ): 190 MIN 150,97 $D - 2\sigma$ $D + 1.282\sigma$ 326,61 $D + 2\sigma$ 365,03 310 MAX