

PITRA

Programa de Infraestructura del Transporte

ASESORÍA TÉCNICA PARA LA REALIZACIÓN DE LOS ESTUDIOS PRELIMINARES Y RECOMENDACIONES DE INTERVENCIÓN PARA VARIOS CAMINOS EN DISTRITO CÓBANO, PUNTARENAS.

LM-PI-GM-INF-06-17

PREPARADO POR Ulate-Castillo, Alonso

Unidad de **Gestión Municipal**

San José, Costa Rica Setiembre, 2017

ASESORÍA TÉCNICA PARA LA REALIZACIÓN DE ESTUDIOS PRELIMINARES Y RECOMENDACIÓN DE INTERVENCIÓN PARA VARIOS CAMINOS EN DISTRITO CÓBANO, PUNTARENAS.

Ulate-Castillo, Alonso 1

1. Ingeniero Unidad de Gestión Municipal PITRA LanammeUCR

Palabras Clave: Asesoría técnica, estudios preliminares, diseño de pavimento, Cóbano, Puntarenas.

Resumen: El Departamento de Ingeniería y Construcción del Concejo Municipal de Distrito de Cóbano, Puntarenas solicitó la asesoría técnica del LanammeUCR para la evaluar una fuente de material granular de la cantera local Tajo Delicias y los resultados indicaron que es apto para realizar actividades de lastrado y rellenos de préstamo, pero no cumple como base o subbase granular para caminos, de acuerdo a las especificaciones del CR-2010. Se estabilizó el material con emulsión asfáltica tipo CSS-1h, cemento hidráulico y cal hidratada. La mezcla de agregado y emulsión asfáltica no cumplió con el recubrimiento y adhesión mínima requerida, por lo que no se recomienda, mientras que la mezcla con cal fue donde se obtuvo el mejor comportamiento, en cuanto a la resistencia a la compresión inconfinada. Los caminos evaluados son: C6-01-128 Montezuma, C6-01-038 Delicias, C6-01-001 Santa Teresa y C6-01-037 San Isidro, donde se realizaron conteos vehiculares, sondeos a cielo abierto, ensayos de DCP para la estimación de CBR en sitio y muestreo de materiales granulares y suelo existente. Además, se caracterizaron muestras del material granular de rodadura del camino C6-01-001 Santa Teresa y se estabilizó con emulsión, cemento y cal. El comportamiento más adecuado se observó con cal, al obtenerse resistencias a la compresión inconfinada equivalentes al cemento pero con dosificaciones menores. Finalmente, se realizan recomendaciones de intervención para las estructuras de pavimentos y se proponen secciones transversales típicas para cada camino. Se recomienda que el Departamento de Ingeniería del Distrito valore las opciones planteadas para determinar el diseño final y que los proyectos de intervención de estos caminos cuenten con los diagramas, planos y especificaciones técnicas correspondientes, así como el control y verificación de calidad durante el proceso constructivo.

TECHNICAL ADVISORY TO CARRY OUT PRELIMINARY STUDIES AND RECOMMENDATION OF INTERVENTION FOR VARIOUS ROADS IN THE DISTRICT OF CÓBANO, PUNTARENAS

Ulate-Castillo, Alonso 1

Engineer Municipal Management Department PITRA LanammeUCR

Keywords: Technical assistance, preliminary studies, pavement design, Cóbano, Puntarenas. Summary: The Engineering and Construction Department of Cóbano Municipal Council, Puntarenas, requested the technical assistance of LanammeUCR for the evaluation of a granular material source from the local quarry Tajo Delicias, and the results indicated that the material can be used as crushed stones on surface of unpaved roads and as coarse fill materials, but are not suitable as granular base or subbase for roads, according to the specifications of CR-2010. The material was stabilized with asphalt emulsion type CSS-1h, hydraulic cement and hydrated lime. The mix of aggregate and asphalt emulsion did not satisfied the coating and the minimum adhesion required, so it is not recommended; while the mixture with hydrated lime presented the best performance, in terms of unconfined compressive strength. The roads evaluated are: C6-01-128 Montezuma, C6-01-038 Delicias, C6-01-001 Santa Teresa and C6-01-037 San Isidro; where vehicular counts, open-pit soil samples, CBR estimation on site with the Dynamic Penetration Cone (DCP) and sampling of granular materials and existing soil were done. In addition, samples of road surface granular material of C6-01-001 Santa Teresa road were characterized and stabilized with emulsion. cement and lime. The most suitable behavior was observed with lime, where the unconfined compressive strength was equivalent to cement but using lower dosages. Finally, intervention recommendations are made for the pavement structures and typical cross sections are proposed for each road. It is recommended that the District Engineering Department assess the options for the final design, and verify that the roads intervention projects have the diagrams, plans and the corresponding technical specification, as well as the control and verification of quality for the construction process.

Ulate-Castillo, A. (2017). Asesoría Técnica para la realización de los estudios preliminares y recomendaciones de intervención para varios caminos en distrito Cóbano, Puntarenas. San José: Programa Infraestructura del Transporte (PITRA), LanammeUCR.

Programa de Infraestructura del Transporte (PITRA)

Informe No. LM-PI-GM-INF-06-2017

Asesoría técnica para realización de estudios preliminares y recomendación de intervención para varios caminos en Distrito Cóbano, Puntarenas.

Preparado por:
Unidad de Gestión Municipal

San José, Costa Rica Setiembre, 2017

Documento generado con base en el Art. 6, inciso j) de la Ley 8114 según la reforma aprobada en la Ley 8603. Reglamento al Art. 6 de la precitada ley, publicado mediante decreto DE-37016-MOPT

Preparado por: Unidad de Gestión Municipal del PITRA-LanammeUCR alonso.ulate@ucr.ac.cr

Información técnica del documento 2. Copia No. 1. Informe LM-PI-GM-INF-06-2017 1 4. Fecha del Informe 3. Título v subtítulo: **ESTUDIOS** ASESORÍA TÉCNICA PARA LA REALIZACIÓN DE LOS PRELIMINARES Y RECOMENDACIONES DE INTERVENCIÓN PARA VARIOS Setiembre, 2017 CAMINOS EN DISTRITO CÓBANO, PUNTARENAS. 7. Organización y dirección Laboratorio Nacional de Materiales y Modelos Estructurales Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, Costa Rica Tel: (506) 2511-2500 / Fax: (506) 2511-4440 8. Notas complementarias 9. Resumen El Departamento de Ingeniería y Construcciones del Concejo Municipal de Distrito de Cóbano, Puntarenas solicitó la asesoría técnica del LanammeUCR para evaluar una fuente de material granular de la zona y realizar estudios preliminares en varios caminos. Se analizó en el laboratorio el material granular de la cantera local Tajo Delicias y los resultados indicaron que es apto para realizar actividades de lastrado y rellenos de préstamo, pero no cumple como base o subbase granular para caminos, de acuerdo a las especificaciones del CR-2010. Se estabilizó el material con emulsión asfáltica tipo CSS-1h, cemento hidráulico y cal hidratada. La mezcla de agregado y emulsión asfáltica no cumplió con el recubrimiento y adhesión mínima requerida, por lo que no se recomienda, mientras que la mezcla con cal fue donde se obtuvo el mejor comportamiento, en cuanto a resistencia a la compresión inconfinada. Los caminos evaluados son: C6-01-128 Montezuma, C6-01-038 Delicias, C6-01-001 Santa Teresa y C6-01-037 San Isidro, donde se realizaron conteos vehiculares, sondeos a cielo abierto, ensayos de DCP para estimación de CBR en sitio y muestreo de materiales granulares y suelo existente. Además, se caracterizaron muestras del material granular de rodadura del camino C6-01-001 Santa Teresa y se estabilizó con emulsión, cemento y cal. El comportamiento más adecuado se observó con cal, al obtenerse resistencias a la compresión inconfinada equivalentes al cemento pero con dosificaciones menores. Finalmente, se realizan recomendaciones de intervención para las estructuras de pavimentos y se proponen secciones transversales típicas para cada camino. Se recomienda que el Departamento de Ingeniería del Distrito valore las opciones planteadas para determinar el diseño final y que los proyectos de intervención de estos caminos cuenten con los diagramas, planos y especificaciones técnicas correspondientes, así como el control y verificación de calidad durante el proceso constructivo. 11. Nivel de seguridad: 12. Núm. de páginas 10. Palabras clave 69

Asesoría técnica, estudios preliminares, diseño de pavimentos, Cóbano, Puntarenas

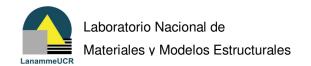
Ninguno

13. Preparado por:

Ing. Alonso Ulate Castillo, M.Eng Ingeniero Civil, UGM

Fecha: 27/09/17

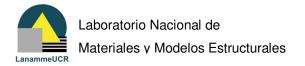
14. Revisado por:


Lic. Miguel Chacón Alvarado Asesor Legal LanammeUCR

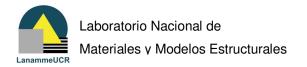
Fecha:

15. Aprobado por:

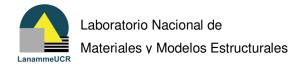
Ing. Luis Guillermo Loría Salazar PhD., Coordinador General PITRA


Fecha:

Índice


1.		Introduccion y antecedentes	/
2.		Ubicación	8
3.		Alcance	10
4.		Limitaciones	
5.		Metodología	12
6.		Evaluación de material granular de cantera local Tajo Delicias	
6). ·	1 Muestreo y caracterización de material granular	14
6	3.3	3 Estabilización del material granular con emulsión asfáltica	19
6	3.4	4 Estabilización del material granular con cemento hidráulico	21
6	3.5	5 Estabilización del material granular con cal hidratada	22
7.		Evaluación de los caminos	24
7	7.	1 Conteos y estimación de tránsito vehicular	24
7	7.2	2 Sondeos a cielo abierto y caracterización de muestras de grava y suelo	25
7	7.3	3 Estimación de CBR en sitio con el DCP	28
7	7.5	5 Estabilización de material existente en camino Santa Teresa	30
8.		Recomendaciones para intervención de los caminos	38
8	3.		
8	3.2		
8	3.3		
8	3.4	4 Camino C6-01-037 San Isidro	56
9.		Conclusiones	63
10.		Recomendaciones	65
11.		Referencias bibliográficas	68
12.		Anexos	69

Índice de figuras


Figura 1. Mapa de ubicación de los caminos y cantera local incluidos en el estudio 9
Figura 2. Metodología utilizada en el proceso de asesoría técnica
Figura 3. Muestreo de cantera local Tajo Delicias15
Figura 4. Granulometría de muestra de agregado Tajo Delicias
Figura 5. Muestras de agregado Tajo Delicias con emulsión asfáltica tipo (CSS-1h) 2
Figura 6. Resistencia a la compresión inconfinada a los 7 días con cemento
Figura 7. Resistencia a la compresión inconfinada a los 7 días con cal
Figura 8. Mapa de ubicación de conteos vehiculares en los caminos evaluados 24
Figura 9. Ubicación de los sondeos a cielo abierto realizados en los caminos de Cóbano
Figura 10. Sondeos y muestreo de material de capa granular existente en Camino Santa
Teresa
Figura 11. Granulometría de material existente en camino Santa Teresa (Sondeo 11) 34
Figura 12. Granulometría de material existente en camino Santa Teresa (Sondeo 12) 35
Figura 13. Resistencia a la compresión inconfinada a los 7 días con cemento (Sondeo 11)
36
Figura 14. Resistencia a la compresión inconfinada a los 7 días con cemento (Sondeo 12)
36
Figura 15. Resultados de falla a la compresión inconfinada a los 7 días con cal (Sondec
11)
Figura 16. Resultados de falla a la compresión inconfinada a los 7 días con cal (Sondec
12)
Figura 17. Camino Montezuma C6-01-128 40
Figura 18. Camino Delicias C6-01-038.
Figura 19. Camino Santa Teresa C6-01-001
Figura 20. Camino San Isidro C6-01-03756
Figura 21. Tramo 150 m que presenta deformaciones del terraplén del camino San Isidro
Figura 22. Otras zonas con deformaciones de la calzada en camino San Isidro 58

Índice de tablas

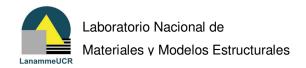
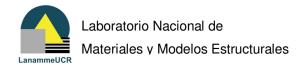

Tabla 1. Caminos incluidos en la asesoría técnica 8
Tabla 2. Comparación de granulometría de material del Tajo Delicias con base y subbase
CR-2010
Tabla 3. Comparación de granulometría de material del Tajo Delicias con capa granular
de rodadura y lastrado CR-201017
Tabla 4. Comparación de material Tajo Las Delicias con requerimientos de materiales
granulares para vías CR-201018
Tabla 5. Resultados ensayo Límites de Atterberg para material Tajo Delicias 20
Tabla 6. Resultados de conteos vehiculares y estimación de Ejes Equivalentes (ESAL). 25
Tabla 7. Muestreo de materiales granulares y suelos en sondeos a cielo abierto 26
Tabla 8. Resumen de resultados de ensayos de granulometría realizados a los suelos 27
Tabla 9. Resumen de resultados de caracterización de materiales muestreados 27
Tabla 10. Resumen de datos de sondeos a cielo abierto
Tabla 11. Resultados ensayo Límites de Atterberg para material camino Santa Teresa 31
Tabla 12. Comparación de granulometría de material del camino Santa Teresa con base y
subbase CR-201032
Tabla 13. Comparación de granulometría de material del camino Santa Teresa con capa
granular de rodadura y lastrado CR-2010
Tabla 14. Especificaciones generales de los materiales utilizados en el diseño 39
Tabla 15. Variables de entrada para diseño de pavimentos de camino Montezuma 41
Tabla 16. Cálculo de espesores de pavimento camino Montezuma (AASHTO 93) 42
Tabla 17. Verificación de desempeño para pavimento de camino Montezuma 42
Tabla 18. Recomendación de intervención para camino Montezuma
Tabla 19. Variables de entrada para diseño de pavimentos de camino Delicias 45
Tabla 20. Cálculo de espesores de pavimento camino Delicias (AASHTO 93) 46
Tabla 21. Verificación de desempeño para pavimento camino Delicias
Tabla 22. Recomendación de intervención para camino Delicias Tramo 1 47
Tabla 23. Recomendación de intervención para camino Delicias Tramo 2
Tabla 24. Variables de entrada para diseño de pavimentos de camino Santa Teresa 50

Tabla 25. Cálculo de espesores de pavimento camino Santa Teresa (AASHTO 93)	51
Tabla 26. Verificación de desempeño para pavimento camino Santa Teresa	52
Tabla 27. Recomendación de intervención para camino Santa Teresa Tramos 1 y 2	53
Tabla 28. Recomendación de intervención para camino Santa Teresa Tramo 3	54
Tabla 29. Recomendación de intervención para camino Santa Teresa Tramo 4	55
Tabla 30. Variables de entrada para diseño de pavimentos de camino San Isidro	59
Tabla 31. Cálculo de espesores de pavimento camino San Isidro (AASHTO 93)	59
Tabla 32. Verificación de desempeño para pavimento camino San Isidro	60
Tabla 33. Recomendación de intervención para camino San Isidro	61
Tabla 34. Recomendación de intervención para camino San Isidro	62


1. Introducción y antecedentes.

El Concejo Municipal de Distrito de Cóbano, por medio de la Unidad Técnica de Gestión Vial (UTGV) solicitó en el OFICIO-ING 420-2016 la asesoría técnica del LanammeUCR para realizar estudios preliminares y recomendaciones de intervención para varios caminos de su red vial, ubicados en Santa Teresa, Delicias, San Isidro y Montezuma.

La Unidad de Gestión Municipal (UGM) del Programa de Infraestructura del Transporte (PITRA) del LanammeUCR realizó los trabajos de asesoría solicitados por el concejo municipal de distrito, de conformidad con el inciso j) del art. 6 de la ley N° 8114. Las actividades realizadas incluyen lo siguiente:

- Muestreo y caracterización en laboratorio de material de cantera local (Tajo Delicias) ubicada en las Delicias. Evaluación del material para ser estabilizado con emulsión asfáltica, cemento y cal.
- Conteos vehiculares con equipo automático (radar) en las vías indicadas.
- Sondeos a cielo abierto para medición de espesores, muestreo de material granular y suelos existente en las vías.
- Ensayos de campo para estimar la capacidad de soporte (CBR en sitio) con el Cono de Penetración Dinámico (DCP) en las vías indicadas.
- Análisis de resultados de ensayos de campo y laboratorio.
- Recomendaciones acerca del tipo de intervención para las vías indicadas.

Como antecedente a este informe, se envió el oficio LM-CI-D-0170-17 Evaluación de material granular y recomendación de intervención de varios caminos, por medio del cual se informó a la Unidad Técnica de Gestión Vial del Concejo Municipal de Distrito de Cóbano sobre los resultados obtenidos en los sondeos a cielo abierto, caracterización de materiales muestreados, conteos vehiculares y tránsito vehicular de las vías antes indicadas. También se informó sobre los resultados de caracterización del material granular de la cantera local (Tajo Delicias) y posibilidades de estabilización con emulsión asfáltica, cal y cemento. Adicionalmente, se enviaron vía correo electrónico recomendaciones para la intervención del camino C6-01-038 Las Delicias (2.5 km).

El objetivo del presente informe es reunir en un solo documento los resultados obtenidos en el proceso de asesoría técnica realizado hasta el momento, para que sirvan de insumo al Departamento de Ingeniería y Construcciones del Concejo de Distrito de Cóbano (en adelante mencionado como Departamento de Ingeniería del Distrito), en la gestión financiera y formulación técnica final del proyecto de mejoramiento de las vías indicadas.

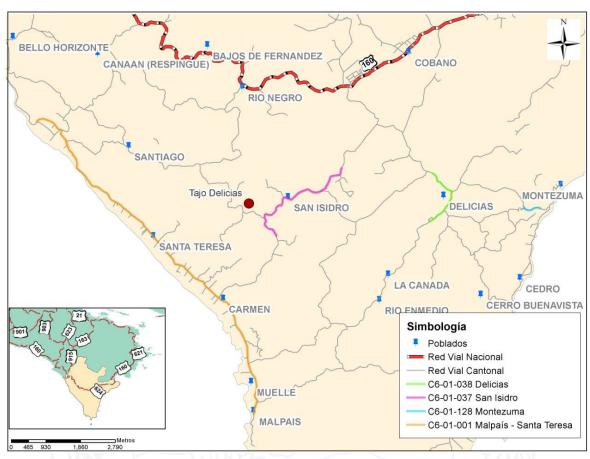
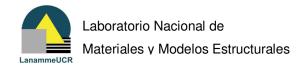
2. Ubicación

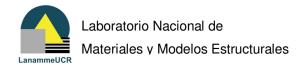
El estudio se realizó en el Distrito de Cóbano, Cantón de Puntarenas, específicamente en los caminos que se muestran en la Tabla 1. Además, se muestra su ubicación en la Figura 1 junto con la cantera local Tajo Delicias.

Tabla 1. Caminos incluidos en la asesoría técnica.

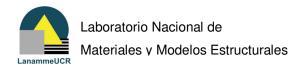
Código	Ubicación	Longitud de estudio (km)	Descripción				
C6-01-128	Montezuma	0.5	Delicias-Montezuma				
C6-01-038	Delicias	2.5	Escuela Delicias-Plaza Futbol Delicias				
33			Tramo1: Escuela Malpaís-Playa Malpaís (0.8 km)				
	Santa Teresa	8.0	Tramo 2: Playa Mar Azul-Blue Jay Lodge (1.4 km)				
C6-01-001		(4 tramos)	Tramo 3: Intersección Playa Carmen-El Peñón (4.6 km)				
		CEM	Tramo 4: Escuela Hermosa Valley-Playa Cocal Grande (1.2 km)				
C6-01-037	San Isidro	3.5	Cóbano-San Isidro Tratamiento Superficial y Sección en pendiente inestable				

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 8 de 69
------------------------------	-------------------------------------	----------------


Figura 1. Mapa de ubicación de los caminos y cantera local incluidos en el estudio.

3. Alcance


- Este estudio se realizó en los caminos C6-01-128 Montezuma, C6-01-038
 Delicias, C6-01-001 Santa Teresa y C6-01-037 San Isidro, en las secciones y longitudes indicadas en el mapa de la Figura 1.
- Las secciones de cada camino que fueron evaluadas se definieron en conjunto con los funcionarios del Departamento de Ingeniería del Distrito, de acuerdo a sus requerimientos y necesidades técnicas.
- Las recomendaciones de intervención incluidas en este informe se ajustan a los resultados de los estudios de campo y ensayos de laboratorio realizados (conteos vehiculares, sondeos a cielo abierto, mediciones con el DCP y ensayos de caracterización de materiales en laboratorio). Además, se aplican las especificaciones de referencia del CR-2010, que se deben cumplir para los materiales a rehabilitar y nuevos.
- En este informe se incluyen los resultados del proceso de evaluación y las recomendaciones de intervención de los caminos indicados, de acuerdo al criterio técnico del LanammeUCR. Sin embargo, el diseño final deberá ser planteado por el Departamento de Ingeniería del Distrito, de acuerdo a su criterio técnico y presupuesto disponible, por medio de planos constructivos y especificaciones técnicas detalladas para la ejecución de los proyectos correspondientes.
- Se realizan las recomendaciones de intervención de los caminos, asumiendo que luego de plantear el diseño final por parte del Departamento de Ingeniería del Distrito, la fase constructiva se ejecutará de manera continua y sin interrupciones, cumpliendo con las especificaciones indicadas para los materiales y procesos constructivos, así como la aplicación de buenas prácticas de ingeniería, lo cual deberá ser comprobado por medio de una proceso de control y verificación de calidad.

4. Limitaciones

- Los ensayos de campo y laboratorio efectuados para las muestras de suelos y
 materiales granulares del sitio, se ajustan a los requerimientos mínimos de
 estudios preliminares para este tipo de vías, clasificadas como caminos de bajo
 volumen o vecinales.
- El diseño de las estructuras de pavimento se realizó por medio de la Guía de Diseño de Pavimentos AASHTO 93, y se verificó su desempeño por medio de las recomendaciones indicadas en el documento LM-PI-GM-INF-22-2014 Recomendaciones Técnicas para el Diseño Estructural de Pavimentos Flexibles con la Incorporación de Criterios Mecánico-Empíricos del LanammeUCR, que se basa en la Guía MEPDG de la AASHTO. Estas metodologías fueron generadas para materiales, condiciones climáticas y cargas vehiculares de otros países o regiones que podrían diferir de las condiciones y materiales encontrados y a incorporar en las vías estudiadas.
- Las recomendaciones de intervención se ajustan a las dimensiones mínimas requeridas en cuanto a la superficie de ruedo y derecho de vía disponible, según lo observado en sitio por el LanammeUCR. Esto deberá ser revisado y confirmado por parte del Departamento de Ingeniería del Distrito, de acuerdo a su registro vial y demás condiciones particulares que considere necesarias.
- Las recomendaciones de intervención del camino San Isidro, específicamente en el tramo de 150m donde se presenta inestabilidad del terraplén del camino, se realizan con el objetivo de mejorar las condiciones de drenaje pluvial y subterráneo del sitio, así como la estructura de pavimentos. Sin embargo, podrían existir problemas de inestabilidad de la ladera donde se ubica el camino, que quedan fuera del alcance de la evaluación realizada por el LanammeUCR. Se recomienda que esto sea evaluado por un geólogo o ingeniero geotecnista, que pueda determinar si existe algún movimiento de tierra en masa en el sitio y las acciones a llevar a cabo.

5. Metodología

El proceso de asesoría técnica se llevó a cabo siguiendo una secuencia de actividades que se reúnen en cuatro grupos como se resumen en la Figura 2.

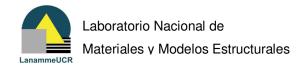
1. Reunión v consulta

• Luego de la solicitud realizada por el Concejo Municipal del Distrito Cóbano, se realizó una reunión para conocer las neccesidades del equipo técnico respecto a la asesoría técnica requeria y se visitaron las vías indicadas en compañia del personal de la Unidad Técnica de Gestión Vial.

2. Ensayos de campo y muestreo

- •5 conteos vehiculares con equipo automático
- •8 sondeos a cielo abierto
- •2 muestras de material granular de cantera local (Tajo Delicias)
- •8 muestras de suelo y material granular existente en las vías
- •10 mediciones de CBR en sitio con el DCP

3. Procesamiento de datos, ensayos de laboratorio y análisis de resultados

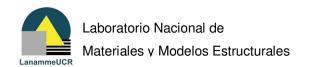

- Caracterización completa de material granular de cantera local (Tajo Delicias) en el laboratorio.
- Evaluación en laboratorio de material de cantera local para estabilizar con emulsión asfáltica, cemento y cal.
- Caracterización básica en laboratorio de materiales granulares y suelo existente en las vías (granulometría, plasticidad).
- Cálculo de TPD y clasificación vehicular.
- Calculo de cargas vehiculares en Ejes Equivalentes (ESALs) para diseño de pavimentos.

4. Recomendaciones sobre estabilización e intervención de vías

- Recomendaciones acerca del estabilizador más adecuado para el material granular de la cantera local (Tajo Delicias) y el material existente en las vías.
- Recomendaciones acerca de la intervención de las estructuras de pavimento en las vías estudiadas.
- Recomendación de sección transversal típica para las vías estudiadas.

Figura 2. Metodología utilizada en el proceso de asesoría técnica.

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 12 de 69



La información de campo fue generada por personal profesional y técnico del LanammeUCR, quien efectuó las visitas al sitio en conjunto con el Departamento de Ingeniería del Distrito, con quienes se definió la ubicación de los conteos, sondeos y sitios de muestreo tanto en las vías existentes como la cantera local (Tajo Delicias). Esta etapa incluyó la realización de cinco conteos vehiculares con equipo automático tipo radar, que tienen la capacidad de clasificar el tránsito en cinco categorías. Se definieron 8 sitios de sondeos a cielo abierto, donde se excavó de manera manual o con maquinaria tipo *back hoe* suministrado por el Departamento de Ingeniería del Distrito. Se realizó medición de espesores de capas granulares existentes, se tomaron muestras de los materiales granulares y se realizaron ensayos con el Cono de Penetración Dinámico (DCP, por sus siglas en inglés). Además, se tomaron muestras del material granular de la cantera local (Tajo Delicias).

En el laboratorio se realizaron ensayos para caracterizar, las muestras de suelo y materiales granular obtenidas en los sitios de sondeo y también el material granular de la cantera local (Tajo Delicias), al cual se le realizaron ensayos adicionales para estimar su comportamiento al mejorarlo o estabilizarlo con emulsión asfáltica, cemento y cal.

Durante el procesamiento de datos, se calculó el tránsito vehicular y se estimaron las cargas vehiculares en Ejes Equivalentes de Diseño (ESAL). Se estimó el aporte en la capacidad de soporte (CBR en sitio) de la capas de material granular y suelo existente en las vías a partir de los ensayos de DCP. Se clasificaron los suelos y materiales granulares obtenidos de los sondeos y se evaluaron los resultados obtenidos con las muestra de la cantera local (Tajo Delicias) al ser mejorado o estabilizado con emulsión asfáltica, cemento y cal.

Se utilizó la metodología AASHTO 93 para realizar los cálculos y recomendaciones referentes a las estructuras de pavimento y se realizan verificaciones de desempeño por medio de modelos mecanístico empíricos. Finalmente, se sugieren secciones transversales típicas para cada una de las vías estudiadas, de acuerdo a las condiciones observadas en el sitio.

6. Evaluación de material granular de cantera local Tajo Delicias.

De acuerdo a las indicaciones de los funcionarios del Departamento de Ingeniería del Distrito, se visitó una cantera local privada denominada *Tajo Delicias* ubicada en San Isidro de Cóbano, de la cual se obtiene material granular por donación para ser utilizado en rellenos granulares y como superficie de ruedo expuesta en caminos de la zona. La fuente de agregados es informal y se extrae directamente de las paredes y taludes excavados con maquinaria, sin realizar selección, tamizado, quebrado o lavado del material. La ubicación de la cantera se muestra en la Figura 1.

6.1 Muestreo y caracterización de material granular.

Se tomaron dos muestras de la cantera del material suelto disponible en el momento de la visita al sitio. Se tomó muestra de una veta superior y otra de la veta inferior como se observa en la Figura 3, las cuales fueron combinadas para obtener una muestra homogenea. Los ensayos de laboratorio que se realizaron para evaluar la calidad del material granular fueron los siguientes:

- Análisis de granulometría (ASTM C136)
- Límites de Atterberg (AASHTO T89 Y T90)
- Abrasión Los Ángeles (ASTM C131)
- Índice de Durabilidad (ASTM D3744)

En el Anexo 1 se adjunta los Informes I-1545-16, I-0164-17, I-0262-17 y I-0267-17 los cuales contienen los resultados de los ensayos de laboratorio indicados.

Las Tablas 2 y 3 muestra el resumen de los resultados del ensayo de análisis de granulometría y la comparación respecto a la especificación para materiales de base y subbase indicada en la Sección 703.05 y otros materiales granulares indicados en el CR-2010. La Tabla 4 muestra los resultados obtenidos para Límites de Atterberg, Índice de Durabilidad, Caras Fracturadas y Abrasión, en comparación con las especificaciones del CR-2010.

Los resultados de los ensayos de laboratorio realizados a las muestras tomadas por el LanammeUCR, indican que el agregado posee exceso de finos plásticos y es susceptible

a la degradación por humedad. Esto indica que no cumple con las especificaciones de base y subbase del CR-2010, sin embargo el material podría utilizarse para otras actividades como capas granulares de rodadura o lastrados para dar transitabilidad a vías en tierra.

Figura 3. Muestreo de cantera local Tajo Delicias.

Tabla 2. Comparación de granulometría de material del Tajo Delicias con base y subbase CR-2010.

Abertura de malla	Subbase Grad A	Subbase Grad B	Base Grad C	Base Grad D	Base Grad E	Material granular Tajo Las Delicias	Comentario	
63mm	100	-	-			96.8	El material granular del Tajo Delicias no	
50mm	97-100	100	100	n D	F	92.5	presenta una granulometría controlada y por lo tanto	
37,5mm	- 4	97-100	(D)	-		86.0	será variable conforme se extraiga, ya que la	
25mm	65-79 (6)	M.A.	80-100 (6)	100		<mark>75.1</mark>	cantera no cuenta con un proceso de selección ni quebrado.	
19mm		2	64-94 (6)	86-100 (6)	100	<mark>68.5</mark>	Al comparar la	
12,5mm	45-59(7)	3	- 46			58.7	granulometría de la muestra extraída, existe un leve porcentaje de	
9,5mm		-		51-82 (6)	62-90 (6)	<mark>52.1</mark>	sobre tamaño en las mallas 63mm, 50mm y	
4,75mm	28-42(6)	40-60(8)	40-69 (6)	36-64 (6)	46-74 (7)	37.1	37.5mm, tanto respecto a las subbases como a las bases granulares	
0,425mm	9-17(4)	8-15	31-54 (4)	12-26 (4)	12-26 (4)	<mark>15.9</mark>	(datos marcados en color rojo).	
0,075mm	4-8(3)	4-12(4)	4-7 (3)	4-7 (3)	4-7 (3)	9.3		

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 16 de 69
------------------------------	-------------------------------------	-----------------

Tabla 3. Comparación de granulometría de material del Tajo Delicias con capa granular de rodadura y lastrado CR-2010.

	% por peso pasando								
Abertura de malla	Capa granular de rodadura (Sección 311)						Lastrado	Material granular	Comentario
de mana	TM- 50a	TM- 50b	TM- 50c	TM- 40a	TM- 40b	TM- 40c	(Sección 312)	Tajo Las Delicias	
70mm	-	-	-	Š			100	98	Al comparar la granulometría de la
50mm	100	100	100) I	DE		92	muestra de Tajo Delicias, se observa que posee un
40mm	1	70-100		100	100	100	9/	87	exceso de sobre tamaño en las mallas
25mm	55-100	55-85	70-100	70-100	70-100	80-100	17/	<mark>77</mark>	50mm y 70mm, para Capa granular de rodadura y Lastrado
20mm		45-75	60-90	50-80	50-80	-		<mark>66</mark>	respectivamente. En las mallas intermedias, se observa una curva granulométrica aceptable en la mayoría de casos. La parte fina no
10mm	30-75	35-65	40-75	25-50	25-50	50-80		49	
4.75mm	20-65	25-55	30-60	10-30	10-30	35-65	30-70	37	
2.5mm	M.	1-/	1	5-15	5-15	-	-	27	
2.0mm	10-50	15-45	15-45			25-50	LEW Z	23	cumple con TM-40a, TM-40b pues
0.2mm	5-30	5-25	10-30	0-5	0-5	15-30	9 <u>-</u> /	13	contiene exceso de finos y tampoco de ajusta a Lastrado
0.08mm	0-20	0-10	0-15	0-3	0-3	5-20	10-15	<mark>9.3</mark>	pues contiene una leve falta de finos.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 17 de 69
------------------------------	-------------------------------------	-----------------

Tabla 4. Comparación de material Tajo Las Delicias con requerimientos de materiales granulares para vías CR-2010.

Propiedades	Espec	2010	Material granular Tajo	Cumple	Comentarios	
del agregado	Base y Subbase (Sección 301)	Capa Granular de Rodadura (Sección 311)	de Rodadura (Socién 312)			?
Límite Líquido (LL)	35 máximo	-	35 máximo	56	No	El agregado posee finos plásticos que lo hacen incumplir la especificación
Índice de Plasticidad (IP)	4-10	4-12	6-12	19	No	de LL e IP. El agregado no cumple
Índice de Durabilidad	35 mínimo	Material que no se quiebre en ciclo humedad- sequedad	<u>.</u>	21	No	con el Índice de Durabilidad, que representa la resistencia relativa del material para quebrarse y para producir finos arcillosos cuando es
Caras fracturadas	Mínimo 50%	Mínimo 50%		100%	20	sometido a humedad y degradación mecánica.
Abrasión Los Ángeles	50% máximo		50% máximo	39.1%	Si	El agregado es anguloso y a pesar de presenta degradación moderada por abrasión, cumple la especificación del CR 2010 en este aspecto.

Se recomienda consultar con profesionales expertos en geología, para que realicen un proceso de análisis más detallado en la cantera, de forma que se pueda determinar el tipo y origen de las rocas, volumen de material disponible, impacto ambiental asociado y demás elementos relacionados. De esta manera se podría estimar el potencial y factibilidad de explotación de la cantera, así como el establecimiento de un proceso formal de extracción, selección, quebrado y lavado de los agregados.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 18 de 69
------------------------------	-------------------------------------	-----------------

6.3 Estabilización del material granular con emulsión asfáltica.

Se realizó la evaluación de la muestra de material granular en el Tajo Delicias de acuerdo a lo indicado en el documento: *Procedimiento de Diseño de Mezcla, Guía para el Diseño de Materiales Estabilizados con Emulsión y Ensayos de Control de Calidad del LanammeUCR (2013)*. El informe de laboratorio I-1545-16 (Anexo 1) contiene el detalle de los ensayos de laboratorio realizados y a continuación se resumen los resultados:

a) Granulometría: se comparó la granulometría de la muestra de agregado del *Tajo Delicias* (Tabla 2), con los requerimientos (límite superior e inferior) indicados en la guía de diseño de mezcla ya mencionada. La Figura 4 muestra que el material granular se acerca al límite inferior recomendado para las mayoría de los tamices, pero tiene un leve exceso de partículas gruesas en los tamices de 37.5 mm, 50 mm y 64 mm. Además, se acerca al límite superior sin excederlo, en la proporción fina en cuanto a la malla No. 200. Esto significa que contiene una leve proporción de sobre-tamaños y está cerca del límite aceptable de finos.

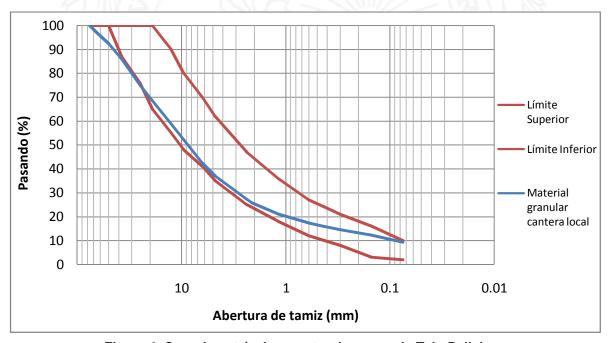


Figura 4. Granulometría de muestra de agregado Tajo Delicias.

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 19 de 69

b) Plasticidad: en el ensayo de Límites de Atterberg se obtuvo el siguiente resultado que se muestra en la Tabla 4. Se puede observar que el agregado tiene finos plásticos en alta proporción.

Tabla 5. Resultados ensayo Límites de Atterberg para material Tajo Delicias.

Limite líquido (LL)	56
Limite plástico (LP)	37
Índice plasticidad (IP)	19

- c) Relación densidad-humedad (Proctor Modificado): se obtuvo una densidad máxima seca de 1635.4 kg/m3 y un contenido de humedad óptimo de 19%.
- d) Dosificación de asfalto: se utilizó emulsión asfáltica catiónica de rompimiento lento tipo CSS-1h suministrada por RECOPE. La metodología de diseño recomienda realizar pruebas con dosificaciones de asfalto residual entre 2 y 3%. De acuerdo a la granulometría, plasticidad y relación densidad-humedad del agregado, se realizaron las pruebas con dosificación de emulsión asfáltica de 3.7% (2.4% de asfalto residual).

El comportamiento de la mezcla con la dosificación indicada no fue satisfactorio debido a la plasticidad del agregado (LL=56, IP=19), por lo que se decidió pretratarlo con 0.8% de cal hidratada para reducir plasticidad, volverlo a mezclar con 3.7% de emulsión asfáltica y dosificar un 1.0% de cal adicional como relleno mineral para evaluar el recubrimiento y adhesión como de indica a continuación.

e) Recubrimiento y adhesión: se evalúa como se recubren las partículas del agregado con la película de asfalto durante el proceso de mezclado y rompimiento de la emulsión.

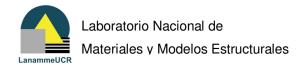
Luego se sumerge la mezcla de agregado-asfalto en agua hirviendo durante 3 minutos y se evalúa el desnudamiento de la película de asfalto de las partículas del agregado que está relacionado con el grado de adhesión que existe entre el agregado y el asfalto.

El resultado de recubrimiento para la muestra de agregado de Tajo Delicias fue de 1.2% de recubrimiento y 1% de adherencia. Lo recomendado por la metodología

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 20 de 69
------------------------------	-------------------------------------	-----------------

de diseño es que el resultado de ambos ensayos sea lo más cercano a 100% y se considera como mínimo aceptable un 60%.

La Figura 5 muestra la mezcla de agregado, emulsión asfáltica y cal, en todos los casos se observa como el recubrimiento es mínimo, prácticamente las partículas conservan su color original y no se aprecia la película de asfalto esperada.


Figura 5. Muestras de agregado Tajo Delicias con emulsión asfáltica tipo (CSS-1h).

6.4 Estabilización del material granular con cemento hidráulico.

Se elaboraron especímenes de laboratorio del agregado estabilizado con 2.5%, 3.0% y 3.5% de cemento hidráulico. Los resultados de falla a la compresión inconfinada a los 7 días se muestran en la Figura 6.

La especificación del CR-2010 Tabla 304-1, indica que se requiere de una resistencia a la compresión inconfinada a los 7 días de 2.8 MPa mínimo (28 Kg/cm2).

Los resultados de resistencia a la compresión inconfinada indican que se requiere aproximadamente una dosificación de 4.7% de cemento para alcanzar la resistencia de la especificación. Esto podría resultar en una solución costosa y además existe la posibilidad de que se presente agrietamientos por contracción debido a la alta dosificación de cemento.

Dado lo anterior, se podría utilizar el agregado para construir capas granulares mejoradas con cemento hidráulico en dosificaciones entre 2.5% y 3.5%, con una resistencia a la compresión inconfinada a los 7 días entre 0.8 MPa (9 kg/cm2) y 1.8 MPa (19 kg/cm2) respectivamente.

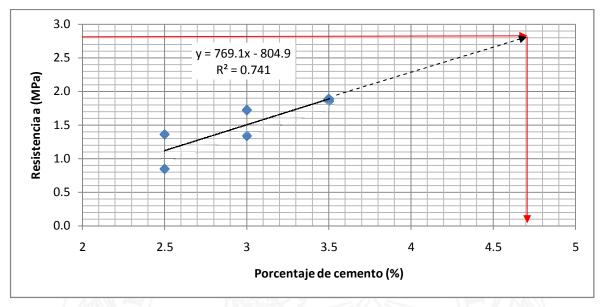


Figura 6. Resistencia a la compresión inconfinada a los 7 días con cemento.

6.5 Estabilización del material granular con cal hidratada.

Se elaboraron especímenes de laboratorio con dosificaciones de 0.8%, 1.8% y 2.8% de cal hidratada (Ca[OH]₂) para evaluar el comportamiento del material con este aditivo.

Los resultados de resistencia a la compresión inconfinada a los 7 días que se muestran en la Figura 7, indican que no se alcanza la resistencia mínima de 2.8 MPa (28 kg/cm2) con las dosificaciones indicadas. Se requiere de 3.5% de cal para alcanzar la resistencia especificada. Sin embargo, se obtienen resistencias mayores con dosificaciones de cal menores a las de cemento hidráulico.

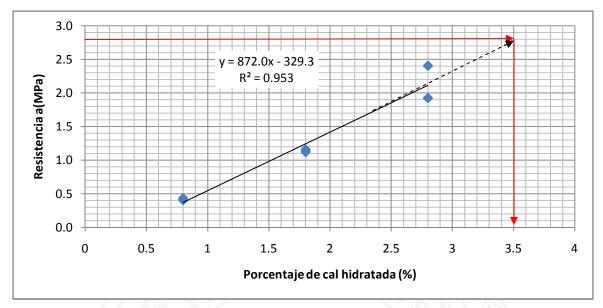


Figura 7. Resistencia a la compresión inconfinada a los 7 días con cal.

Lo anterior indica que la utilización de cal es más eficiente que el cemento hidráulico para estabilizar o mejorar este material en su condición actual. Se podría utilizar dosificaciones entre 1.5% y 2.8% de cal hidratada para obtener capas granulares mejoradas con cal hidratada, con resistencia entre 1.0 MPa (10 Kg/cm2) y 2.2 MPa (22 Kg/cm2) respectivamente.

7. Evaluación de los caminos.

Los ensayos de campo incluyeron conteos vehiculares, sondeos a cielo abierto, muestreo de material granular existente y suelos y ensayos de DCP. Además, se realizaron ensayos de laboratorio para caracterización de los suelos como se indica a continuación.

7.1 Conteos y estimación de tránsito vehicular.

Se realizaron cinco conteos vehiculares con equipo automático neumático y de radar, cuyos resultados se adjuntan en el Anexo 3. La ubicación de los conteos se puede observar en el mapa de la Figura 8 y fotografías de la Figura 8. Los resultados de tránsito vehicular y Ejes Equivalentes (ESAL) se resumen en la Tabla 6.

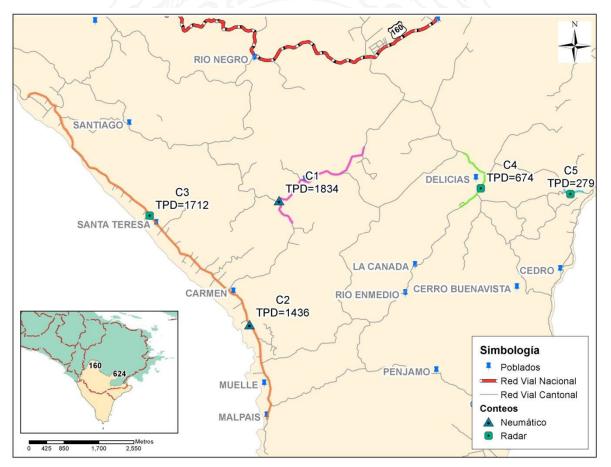


Figura 8. Mapa de ubicación de conteos vehiculares en los caminos evaluados.

Tabla 6. Resultados de conteos vehiculares y estimación de Ejes Equivalentes (ESAL).

Conteo	Lugar	Tipo de contador	TPD	% pesados	Ejes Simples Equivalentes (ESAL)			
		contador pesados	pesauos	8 años	10 años	15 años		
1	Santa Teresa	Radar	1712	8.9%	352 273	459 010	765 530	
2	Malpaís	Neumático	1436	3.9%	78 130	101 803	169 785	
3	San Isidro	Neumático	1834	8.5%	287 834	375 047	625 497	
4	Delicias	Radar	674	12.0%	108 270	141 075	235 283	
5	Montezuma	Radar	279	2.2%	8 020	10 450	17 428	

7.2 Sondeos a cielo abierto y caracterización de muestras de grava y suelo.

Se realizaron 12 sondeos a cielo abierto en los caminos de Cóbano, en las ubicaciones mostradas en mapa de la Figura 9. Los datos registrados en el sitio de cada sondeo se pueden observar en los formularios del Anexo 4.

Los sondeos a cielo abierto o calicatas se excavaron hasta llegar a la profundidad donde se encontrara el suelo de subrasante o hasta una profundidad máxima de 1 m. Durante esta actividad, se midieron los espesores de las capas de grava o suelo existentes, se realizó una caracterización visual en sitio de los materiales de suelo y granulares existentes, se tomaron muestras para analizar en el laboratorio y se midió la capacidad de soporte del suelo (CBR en sitio) por medio del Cono de Penetración Dinámico (DCP).

La Tabla 7 resume el muestreo de materiales durante los sondeos a cielo abierto. Los informes de laboratorio I-1589-16 que se adjuntan en el Anexo 5 contienen el detalle de los resultados de los ensayos de laboratorio realizados a las muestras de material granular y suelo de los sondeos. En las Tabla 8 y 9 se resume de los resultados de caracterización, de acuerdo a los ensayos básicos de Análisis Granulométrico y Límites de Atterberg respectivamente, cuyos resultados se utilizaron para clasificarlos por medio de las metodologías SUCS y ASSHTO.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 25 de 69
------------------------------	-------------------------------------	-----------------

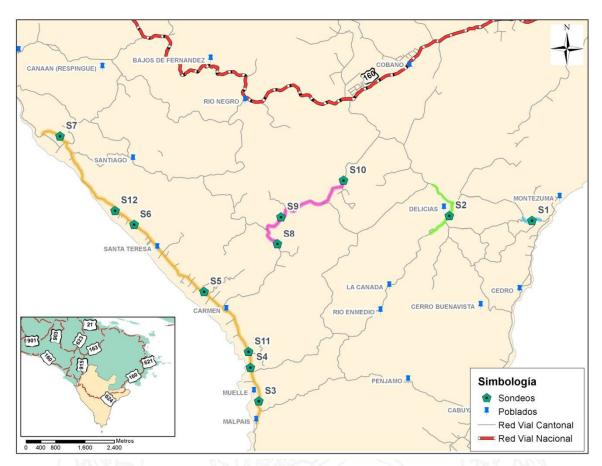
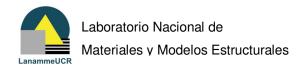


Figura 9. Ubicación de los sondeos a cielo abierto realizados en los caminos de Cóbano.

Tabla 7. Muestreo de materiales granulares y suelos en sondeos a cielo abierto.

Sondeo	Camino	Materiales muestreados	Número de muestra
1	Montezuma	Material de rasante existente (mezcla de agregado y suelo)	2618-19
2	Delicias	Material de rasante existente (mezcla de agregado y suelo)	2619-16
4		Material de subrasante (suelo)	2620-16
5	Santa	Material de subrasante (suelo)	2621-16
6	Teresa	Material de subrasante (suelo)	2622-16
7		Material de subrasante (suelo)	2623-16
8	San Isidro	Material de subrasante (suelo)	2624-16
0	San Isiaro	Material de subrasante (suelo)	0341-17
11	Santa	Material granular de rasante (mezcla agregado y suelo)	0339-17
12	Teresa	Material granular de rasante (mezcla agregado y suelo)	0340-17

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 26 de 69


Tabla 8. Resumen de resultados de ensayos de granulometría realizados a los suelos.

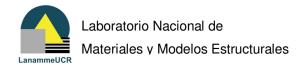
			Porcenta	je Pasan	FG	FS	CF	
Sondeo	Camino	N°4	N°10	N°40	N°200	(%	(%	(%
						grava)	arena)	finos)
1	Montezuma	69.3	56.1	41.8	29	30.7	40.3	29.0
2	Delicias	83.5	76.4	67.7	57.7	16.5	25.8	57.7
4		76.3	67.8	60.3	48.9	23.7	27.4	48.9
5	Santa Teresa	55.8	43.6	29.6	18.5	44.2	37.3	18.5
6		58.6	50	40.9	28.8	41.4	29.8	28.8
7	\$ - Fran	61.2	50.5	40.6	31	38.8	30.2	31.0
8	San Isidro	98.6	97.9	96.9	86.9	1.4	11.7	86.9
11	Santa Teresa	61.9	47.6	31.6	18.1	81.9	18.1	61.9
12	7 N &/	77.8	65	50.4	34	66	34	77.8

Tabla 9. Resumen de resultados de caracterización de materiales muestreados.

Sondeo	Camino	Límite Líquido	Límite Plástico	Índice de Plasticidad	sucs	AASHTO	Nombre ASTM D-2487
1	Montezuma	34	24	10	SM	A-2-4(0)	Arena limosa con grava
2	Delicias	57	34	23	МН	A-7-5(12)	Limo elástico arenoso con grava
4	VIII I	63	36	27	SM	A-7-5(10)	Arena limosa con grava
5	Santa	35	22	13	GC	A-2-6(0)	Grava Arcillosa con arena
6	Teresa	49	31	18	GM	A-2-7(0)	Grava limosa con arena
7		48	30	18	GM	A-2-7(0)	Grava limosa con arena
8	San Isidro	53	29	27	СН	A-7-6(26)	Arcilla plástica
11	Santa	39	28	11	SM	A-2-6(0)	Arena limosa con grava
12	Teresa	64	35	29	SM	A-2-7(3)	Arena limosa con grava

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 27 de 69

7.3 Estimación de CBR en sitio con el DCP.


Se realizaron 10 ensayos del Cono de Penetración Dinámico (*DCP*, por sus siglas en inglés) en los sondeos a cielo abierto para estimar la capacidad de soporte CBR en sitio de las capas de material granular y suelo existentes en los caminos evaluados. Los gráficos de estimación del CBR en sitio se adjuntan en el Anexo 6. Para facilitar el análisis de datos, se definieron capas de pavimento típicas de acuerdo a lo indicado en la Tabla 9. Luego se asignó el espesor de capa y CBR en sitio promedio estimado para cada sondeo como se muestra en la Tabla 10 y se resume a continuación:

- <u>Camino Montezuma</u>: se observa que se tiene una capa de material granular combinado con suelo de espesor cercano de 10 cm sobre suelos limosos arenosos con moderada capacidad de soporte. Además, se observó en algunas zonas el afloramiento de una capa de roca muy cercana a la superficie.
- <u>Camino Delicias:</u> se tiene una capa de suelo con alguna presencia de partículas de grava en un espesor entre 20 y 25 cm de espesor, sobre suelo subrasante limoso arenoso con moderada capacidad de soporte.
- Camino Santa Teresa: tiene una capa de ruedo material granular combinada con suelo en espesor variable entre 10 y 25 cm sobre una capa de relleno de material granular combinado con suelo en espesor variable entre 20 y 60 cm sobre suelo subrasante limoso arenoso de baja capacidad de soporte. En este camino existen tramos con mayor espesor de material granular que otros, debido a las actividades de mantenimiento que se han realizado a lo largo de los años, aplicación de emulsión asfáltica y melaza para control de polvo.
- Camino San Isidro: cuenta con un Tratamiento Superficial Bituminoso (TSB) como superficie de ruedo, una capa de material granular mezclado con cemento en un espesor entre 20 y 40 cm. El suelo subrasante es arcilloso de color rojizo, de alta plasticidad muy susceptible a la humedad. Se identificaron al menos tres secciones del camino (cerca de sondeos 8, 9 y 10) donde se han generado severas deformaciones del suelo debido a la falta de elementos de drenaje pluvial (cunetas y pasos de alcantarilla). La humedad acumulada en estos sectores ha provocado inestabilidad del suelo de subrasante y se han generado severas deformaciones en la base y superficie de ruedo. El tramo de 150 m donde se realizó el sondeo 8,

Informe LM-PI-GM-INF-06-2017 Fecha de

Fecha de emisión: Setiembre de 2017

Página 28 de 69

corresponde a una sección con pendiente que presenta los mayores problemas por inestabilidad de la subrasante, falta de cunetas y drenaje de nivel freático. Esto se puede observar en las fotografías del sondeo 8 (Anexo 4).

Tabla 10. Resumen de datos de sondeos a cielo abierto.

Camino	Sondeo	Datos	Сар	as de mate	rial granu	granular y suelos existentes				
			SA/TSB	CGR/BG	RE1	RE2	SR1	SR2		
Montezuma	1	Espesor (cm)		10	2	-	25	>45		
Montezuma		CBR sitio promedio		20%		13	14%	77%		
Delicias	2	Espesor (cm)	AL.	25	$c = \sqrt{2}$	125	25	>30		
Donoido	177	CBR sitio promedio	-	7%	74	1-1/1	11%	10%		
7	3	Espesor (cm)	-	25	20	9//	35	>10		
1	SMV 4	CBR sitio promedio	V.	50%	100%	/& /	34%	10%		
41	AVA	Espesor (cm)		20	>60	- \501		-		
11	4	CBR sitio promedio		21%	31%	- 15		-		
Santa	5	Espesor (cm)	10	15	40	- 5	>15	-		
Teresa		CBR sitio promedio	CUST	90%	17%	-	5%	-		
120	6	Espesor (cm)	Ver	25	25	25	>15	-		
3()		CBR sitio promedio	14/1	41%	27%	43%	11%	-		
Y		Espesor (cm)	WY	10	30	- / -]_	>45	-		
1	7	CBR sitio promedio		37%	53%	/ -///	15%	-		
		Espesor (cm)	Jan W	20	-/		40	>30		
	8	CBR sitio promedio	-	12%	<u> </u>	TAY!	7%	9%		
Oam latalas		Espesor (cm)	2.5	30	>60	-	-	-		
San Isidro	9	CBR sitio promedio	-	4%	68%	-	-	-		
	40	Espesor (cm)	2.5	40	-	-	>50	-		
	10	CBR sitio promedio	-	23%	-	-	13%	-		

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 29 de 69

7.5 Estabilización de material existente en camino Santa Teresa.

Luego de realizar la caracterización y estabilización del material granular del Tajo Delicias, (explicados en el apartado 6 de este documento), se realizó un muestreo adicional del material granular existente en la superficie de ruedo expuesta del camino C6-01-001 Malpaís-Santa Teresa-Playa Hermosa con el objetivo de caracterizarlo y evaluarlo para ser estabilizado.

Se realizaron dos sondeos adicionales (Sondeo 11 y 12) en la ubicación mostrada en el mapa de la Figura 9. En estos sondeos se tomó una muestra del material de la capa granular de existente, como se observa en la Figura 10. Este material corresponde a una mezcla de agregado extraído de la cantera local Tajo Delicias, combinado con suelo y otros agregados del sitio, según la indicación de los funcionarios del Departamento de Ingeniería del Distrito.

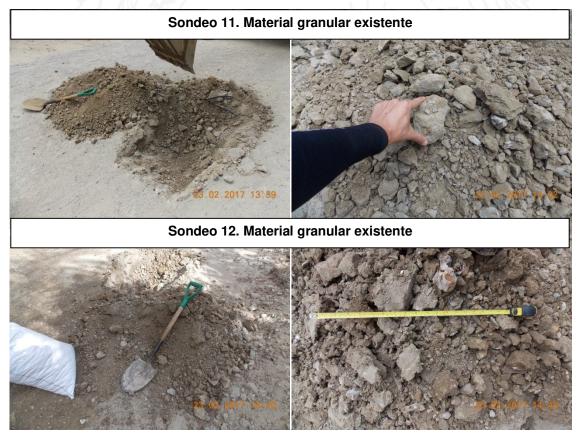
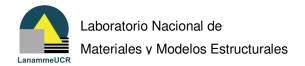



Figura 10. Sondeos y muestreo de material de capa granular existente en Camino Santa Teresa.

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 30 de 69

Los resultados de los ensayos de laboratorio para la caracterización del material granular existente en la superficie de ruedo expuesta se adjuntan en el ANEXO 7, Informe de laboratorio I-0790-17 y se resumen a continuación:

- a) Granulometría: se obtuvo la granulometría de las dos muestras de agregado existente en la superficie de ruedo del camino Santa Teresa. Se comparó con la granulometría de bases y subbases (Tabla 13), de capa granular de rodadura y lastrado (Tabla 14) según lo indicado por el CR-2010. Se determinó el material posee una leve proporción de sobre tamaños, pero notable exceso de finos, posiblemente al haberse combinado con suelo del sitio.
- b) Plasticidad: se puede observar en la Tabla 12 que el material posee finos plásticos en exceso para ambos casos, siendo más notable en el Sondeo 12.

Tabla 11. Resultados ensayo Límites de Atterberg para material camino Santa Teresa.

	Especit	ficaciones CR-2	Material camino Santa Teresa		
Parámetro	Base y Subbase (Sección 301)	Capa Granular de Rodadura (Sección 311)	Lastrado (Sección 312)	Sondeo 11	Sondeo 12
Limite líquido (LL)	35 max	-	35 max	39	64
Limite plástico (LP	-	-	-	28	35
Índice plasticidad (IP)	4-10	4-12	6-12	11	29

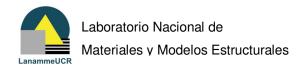


Tabla 12. Comparación de granulometría de material del camino Santa Teresa con base y subbase CR-2010.

Abertura de malla	Subbase	Subbase Subbase		Base	Base	Material Camino Sa	granular inta Teresa	Comentario
	Grad A	Grad B	Grad C	Grad D	Grad E	Sondeo 11	Sondeo 12	
63mm	100	-	-			100	100	
50mm	97-100	100	100	OAI) DI	100	100	El material granular del camino Santa Teresa no cumple con la
37,5mm	-	97-100	12	-	-	96.2	93.6	granulometría de bases y subbases según el CR-2010.
25mm	65-79 (6)	1 N	80-100 (6)	100	5	93.0	92.4	Al comparar la granulometría de la muestra extraída, existe un
19mm	- }		64-94 (6)	86-100 (6)	100	89.8	89.1	leve porcentaje de sobre tamaño en las mallas de 37.5mm y 12.5mm, tanto
12,5mm	45-59(7)		-			82.1	86.1	respecto a las subbases como a las bases granulares.
9,5mm	- \		\-	51-82 (6)	62-90 (6)	76.7	84.6	En la parte fina se tiene un exceso de material pasando la
4,75mm	28-42(6)	40-60(8)	40-69 (6)	36-64 (6)	46-74 (7)	61.9	77.8	malla 200 (0.075mm), lo que puede indicar que el material está combinado con partículas
0,425mm	9-17(4)	M	31-54 (4)	12-26 (4)	12-26 (4)	31.6	50.4	de suelo fino.
0,075mm	4-8(3)	4-12(4)	4-7 (3)	4-7 (3)	4-7 (3)	18.7	34.0	

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 32 de 69

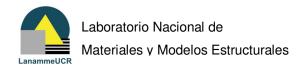


Tabla 13. Comparación de granulometría de material del camino Santa Teresa con capa granular de rodadura y lastrado CR-2010.

					6 por pes			0 CH-2010.		
Abertura	Сар	oa granul	lar de ro	dadura (Sección	311)	Lastrado		granular ınta Teresa	Comentario
de malla	TM- 50a	TM- 50b	TM- 50c	TM- 40a	TM- 40b	TM- 40c	(Sección 312)	Sondeo 11	Sondeo 12	
70mm	-	-	-	-	-		100	100	100	Al comparar la
50mm	100	100	100		32	7/2 O 1	DE.	100	100	granulometría del material del camino Santa Teresa
40mm	-	70-100	731	100	100	100	-	97	<mark>95</mark>	se observa que no se cumple con lo indicado por el CR-2010 para capa
25mm	55-100	55-85	70-100	70-100	70-100	80-100	11/	94	93	granular de rodadura ni lastrado.
20mm	-	45-75	60-90	50-80	50-80			90	<mark>89</mark>	El material una leve proporción de sobre
10mm	30-75	35-65	40-75	25-50	25-50	50-80	3//	78	<mark>85</mark>	tamaño en la malla de 40mm (celdas color
4.75mm	20-65	25-55	30-60	10-30	10-30	35-65	30-70	<mark>62</mark>	77	amarillo). La parte fina no cumple
2.5mm	-		<u> </u>	5-15	5-15		-	51	70	para la mayoría de las granulometrías
2.0mm	10-50	15-45	15-45	723		25-50	M- MM-/	47	64	especificadas por el CR- 2010, dado que el material muestra exceso
0.2mm	5-30	5-25	10-30	0-5	0-5	15-30		<mark>26</mark>	41	de partículas finas, posiblemente al
0.08mm	0-20	0-10	0-15	0-3	0-3	5-20	10-15	19	34	combinarse con suelo fino.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 33 de 69
------------------------------	-------------------------------------	-----------------

c) Estabilización del material granular con emulsión asfáltica: se comparó el material del camino Santa Teresa con las indicaciones de la guía de diseño para ser estabilizado con emulsión asfáltica, como se muestra en las Figuras 11 y 12. Se observó que el material no cumple con los límites recomendados de granulometría, ya que posee una leve proporción de sobre tamaños y un exceso notable de finos por presencia de suelo. La plasticidad de los finos excede lo recomendado como se muestra en la Tabla 12. Se procedió a realizar la mezcla con emulsión asfáltica en laboratorio, sin embargo el comportamiento en cuanto a recubrimiento y adherencia fue muy similar al del material de la cantera local Tajo Delicias. Debido a la granulometría, plasticidad y comportamiento durante el proceso de mezcla, no se recomienda la estabilización de este material con emulsión asfáltica, ya que podría presentar desprendimientos de forma acelerada.

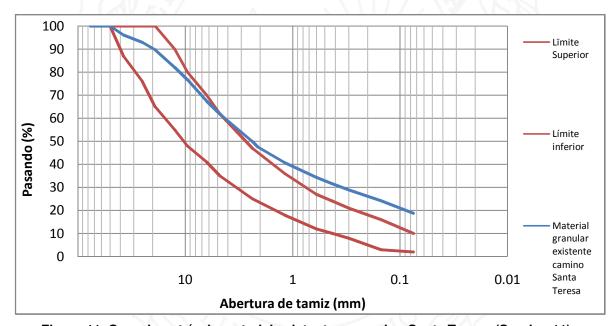


Figura 11. Granulometría de material existente en camino Santa Teresa (Sondeo 11).

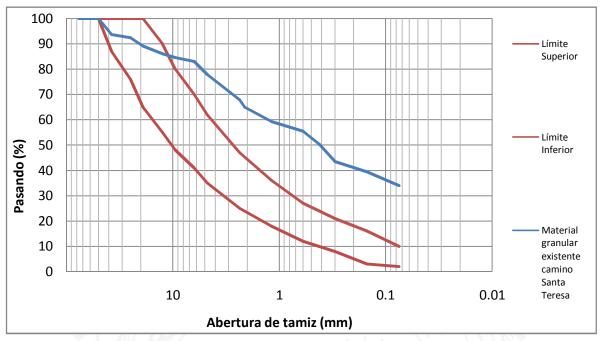


Figura 12. Granulometría de material existente en camino Santa Teresa (Sondeo 12).

d) Estabilización del material granular con cemento hidráulico: se elaboraron especímenes de laboratorio de este material estabilizado con 2.5%, 3.0% y 3.5% de cemento hidráulico. Los resultados de falla a la compresión inconfinada a los 7 días se resumen en la Figuras 13 y 14, de acuerdo a los datos adjuntos en el Anexo 7. Se requiere aproximadamente una dosificación de 3.0% de cemento para el material encontrado en el Sondeo 11 y de 4.7% para el material encontrado en el Sondeo 12, en ambos casos para alcanzar la resistencia de la especificación del CR-2010 Tabla 304-1de 2.8 MPa mínimo (28 Kg/cm2) a los 7 días.

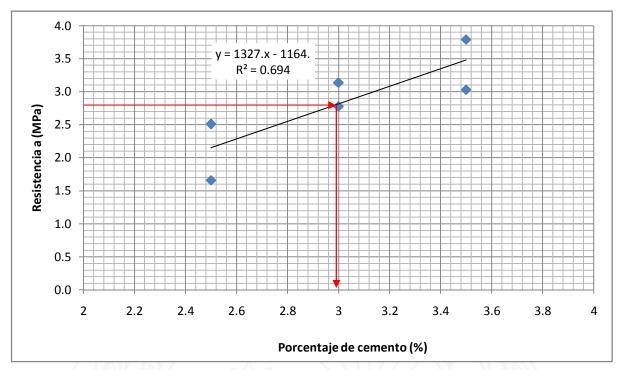


Figura 13. Resistencia a la compresión inconfinada a los 7 días con cemento (Sondeo 11).

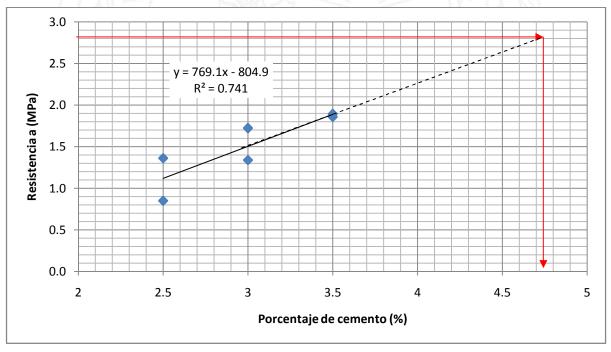


Figura 14. Resistencia a la compresión inconfinada a los 7 días con cemento (Sondeo 12).

a) Estabilización del material granular con cal hidratada:

Se elaboraron especímenes de laboratorio con dosificaciones de 0.8%, 1.8% y 2.8% de cal hidratada (Ca[OH]₂) para evaluar el comportamiento del material con este aditivo. Los resultados de falla a la compresión inconfinada a los 7 días se resumen en la Figuras 15 y 16, de acuerdo a los datos adjuntos en el Anexo 7. Se requiere aproximadamente una dosificación de 2.6% de cal hidratada para el material encontrado en el Sondeo 11 y de 5.0% para el material encontrado en el Sondeo 12, en ambos casos para alcanzar la resistencia de la especificación del

Dado lo anterior, se considera que tanto el cemento hidráulico como la cal hidratada son buenas opciones para mejorar o estabilizar el material existente en el camino Santa Teresa. Se recomienda realizar muestreo con mayor frecuencia en el camino para determinar su variabilidad. Luego por medio diseño de mezcla en el laboratorio definir si es necesario aporte parcial de agregado con el objetivo de definir una dosificación de estabilizador uniforme.

CR-2010 Tabla 304-1de 2.8 MPa mínimo (28 Kg/cm2) a los 7 días.

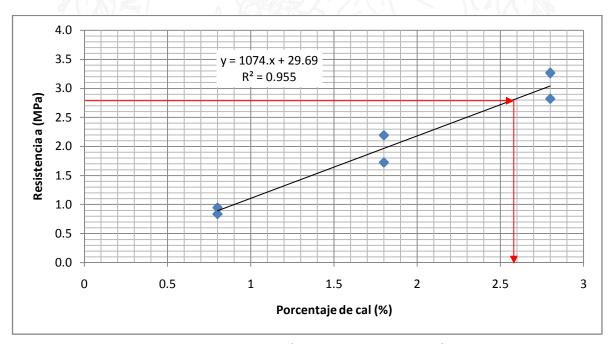


Figura 15. Resultados de falla a la compresión inconfinada a los 7 días con cal (Sondeo 11).

Informe I M-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 37 de 69

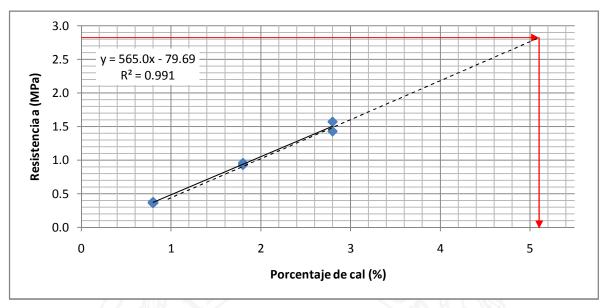
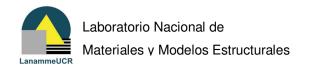



Figura 16. Resultados de falla a la compresión inconfinada a los 7 días con cal (Sondeo 12).

8. Recomendaciones para intervención de los caminos.

Esta sección contiene las recomendaciones de intervención para cada uno de los caminos evaluados. Se presentan diseños preliminares de estructuras de pavimento y secciones transversales típicas para que el Departamento de Ingeniería del Distrito valore y defina finalmente, el diseño definitivo del proyecto de acuerdo con su criterio técnico y recurso humano y presupuesto disponible.

Se utilizó la metodología de diseño de pavimentos AASHTO 93 para estimar el aporte de las capas de materiales granulares y suelos existentes indicadas en la Tabla 10, así como el espesor de las capas de materiales nuevos que se requiere incorporar de acuerdo a las solicitaciones de tránsito asociadas a cada camino. Además, se presentan los resultados de modelación mecanístico-empírica para evaluar el desempeño de las estructuras de pavimento de acuerdo a las indicaciones del documento *LM-PI-GM-INF-22-2014 Recomendaciones Técnicas para el Diseño Estructural de Pavimentos Flexibles con la Incorporación de Criterios Mecánico-Empíricos* del LanammeUCR.

Las características y especificaciones técnicas generales de los materiales nuevos o rehabilitados que se consideran en las recomendaciones como componentes de la estructura de pavimento, corresponden a lo indicado en el Manual CR-2010 y se resumen en la Tabla 14.

Tabla 14. Especificaciones generales de los materiales utilizados en el diseño.

Abreviatura	Definición	Especificaciones básicas					
TSB	Tratamiento Superficial Bituminoso	Tratamiento Superficial Bituminoso construido de acuerdo a las especificaciones indicadas en el CR-2010, Sección 411.					
BG Base granular		 Base granular graduación C o D según CR-2010, Sección 301. CBR=80 min, compactación 95% de PM (AASHTO T180) Límite Líquido 35 max, Índice de plasticidad 4-9 					
BE	Base granular estabilizada con cemento	 Base granular graduación C o D estabilizada con cemento según CR-2010, Sección 304. Resistencia a la compresión inconfinada a los 7 días de al menos 2.8 MPa. 					
CGRE	Material granular y suelo existente mezclado con cemento o cal	 Dosificación definida en diseño de mezcla (incorporar recomendaciones de apartados 6 y 7.5 de este informe) para mejoramiento o estabilización con cemento o cal. Resistencia a la compresión inconfinada a los 7 días de al menos 2.0MPa. 					
SBG	Subbase granular	 Subbase granular graduación B según CR-2010, Sección 301. CBR=30 min, compactación 95% de PM (AASHTO T180). Límite Líquido 35 max, Índice de plasticidad 4-10. 					
REP	Relleno de agregado permeable para	 Material granular de relleno permeable para drenaje con geotextil de acuerdo a CR-2010, sección 604 y 703.03. Geotextil Tipo I de acuerdo a CR-2010, Sección 714.01 Tubería plástica perforada de acuerdo a CR-2010, Sección 706.08 					

8.1 Camino C6-01-0128 Montezuma

Ubicación del camino

La sección del camino C6-01-0128 Montezuma que fue evaluada tiene una longitud de 500 m y se muestra en el mapa de la Figura 17.

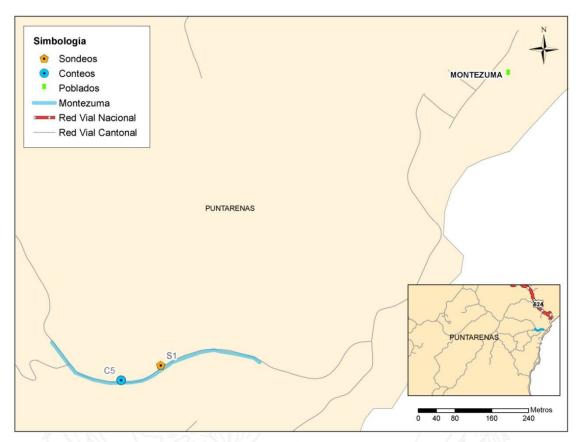


Figura 17. Camino Montezuma C6-01-128.

Diseño de pavimentos y verificación de desempeño

La Tabla 15 muestra las variables de entrada utilizadas en el diseño de pavimentos del camino Montezuma, mientras que la Tabla 16 muestra el cálculo de espesores de capas de pavimento. Se presentan dos alternativas, para que el Departamento de Ingeniería del Distrito decida cual se ajusta a sus capacidades técnicas y recursos disponibles, de acuerdo a lo siguiente:

Informe I M-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 40 de 69

- Opción 1 (BG y TSB): aporte de material de base granular nueva (BG) de 10cm de espesor para mezclarlo con 10cm de la capa de material granular existente (CGR).
 Se propone un tratamiento superficial bituminoso (TSB) como superficie de ruedo impermeabilizadora.
- Opción 2 (CGRE y TSB): mezcla de material granular de rodadura (CGR) y subrasante (SR1) con cemento o cal en un espesor total de 20 cm. Se recomienda incorporar las recomendaciones de este informe para el diseño de mezcla de la capa mejorada o estabilizada con cemento o cal. Se recomienda como superficie de ruedo un tratamiento superficial bituminoso (TSB) como superficie de ruedo.

Tabla 15. Variables de entrada para diseño de pavimentos de camino Montezuma.

ato, parámetro de entrada o cá	Iculo inicial	Valor	
Período de Diseño	PD	10 años	
Ejes equivalentes de diseño	W ₁₈	10 450	
Confiabilidad	R	50%	
Desviación normal estándar	Z _R	0.000	
Desviación estándar global	S ₀	0,50	
Índice de servicio inicial	p ₀	4,2	
Índice de servicio al final	p _t	2,5	
Cambio en índice de servicio	ΔPSI	1,7	
CBR en sitio subrasante	%	77%	
Mr eff subrasante	psi/MPa	9522	
SN _{req}	AVE JAL	1.13	
Correlaciones utilizadas para	la estimación del m	nódulo resilente (Mr) de la subrasante	
Referencia	Rango CBR	Ecuación	
Heukelom & Klomp (1962)	< 7.2 %	Mr(psi) = 1500 * CBR	
CSIR (Witzack el al. 1995)	7.2 % - 20%	$Mr(psi) = 3000 * CBR^{0.65}$	
AASHTO (1993)	> 20%	Mr(psi) = 4326 * ln(CBR) + 241	

|--|

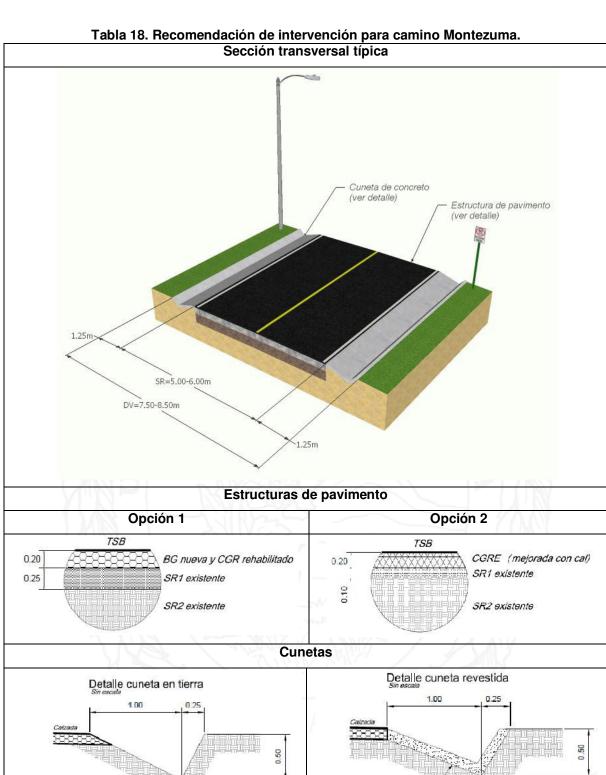
Tabla 16. Cálculo de espesores de pavimento camino Montezuma (AASHTO 93).

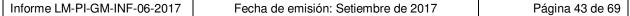
Opción	Capa o material	Origen	Coef. Estruct. a_i	Módulo estimado (psi/MPa)	Coef. drenaje m_i	Espesor (cm)	SN diseño
	TSB	Nuevo	-	-	-	-	-
1	BG	Nuevo	0.11	14000 / 193	0.8	10	0.35
(base	CGR	Rehabilitado	0.11	14000 / 193	0.8	10	0.35
,	SR1	Existente	0.09	10000 / 69	0.8	25	0.71
granular)	SR2	Existente	F (-) - ()	9522/66	-	-	-
			77711		Total	50	1.40
2	TSB	Nuevo			-	-	-
	CGRE	Rehabilitado	0.14	45000/310	1.0	20	1.10
(base	SR1	Existente	0.09	10000 / 69	0.8	10	0.28
mejorada)	SR2	Existente	-	9522/66	- 1	-	-
	37300			~ U	Total	50	1.39

Los resultados de la modelación mecánica y verificación de desempeño se muestran en la Tabla 17.

Tabla 17. Verificación de desempeño para pavimento de camino Montezuma.

Oncién	MINI	5/	Ahue	llamiento (m	ım)		MI	
Opción	CGRE	BG	CGR	SR1	SR2	Total	Criterio	Cumplimiento
1	MINE	4.23	4.23	4.95	5.85	19.26	25.0	Si Cumple
	11/1/1		Ahue	llamiento (m	m)		1 17	
	CGRE	BG	CGR	SR1	SR2	Total	Criterio	Cumplimiento
2	1 1/1	\-	~9K	6.12	7.81	13.93	25.0	Si Cumple
2	MILL	Vid	a a fatiga ca	pas estabiliz	adas (ESAL	-)	11//	
	CGRE	BG	CGR	SR1	SR2	Total	Criterio	Cumplimiento
	94 268	18 - 187	AND	1-	TE	7-	10 450	Si cumple


Sección transversal típica y estructuras de pavimento


La sección transversal típica y las estructuras de pavimento recomendadas para el camino Montezuma se pueden observar en la Tabla 18. Además, en el Anexo 8 se incluye una lámina donde se resume la recomendación de intervención para el camino. En este caso se recomienda que cuando el camino presente pendiente longitudinal mayor a 10% las cuentas sean revestidas en concreto hidráulico.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 42 de 69
------------------------------	-------------------------------------	-----------------

conformado y compactado Recubrir con concreto si pendiente longitudinal del camino mayor 10%

8.2 Camino C6-01-038 Delicias

La sección del camino C6-01-038 Delicias que fue evaluada tiene una longitud de 2.5 km y se extiende desde la Escuela Delicias hasta la plaza de futbol en Delicias centro como se muestra en el mapa de la Figura 18.

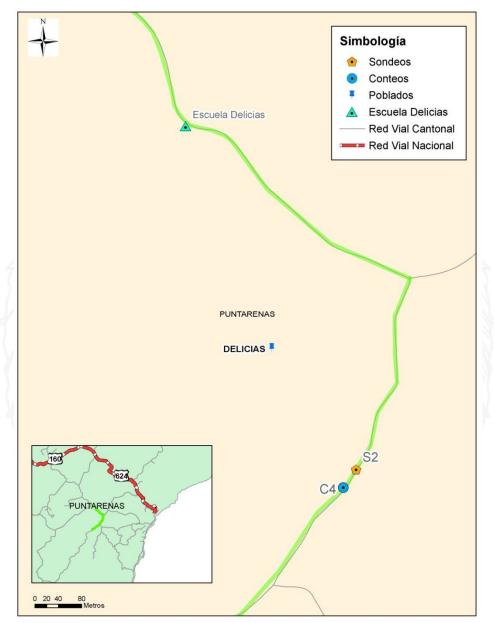
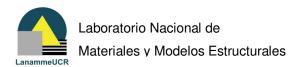



Figura 18. Camino Delicias C6-01-038.

Diseño de pavimentos y verificación de desempeño

La Tabla 19 muestra las variables de entrada utilizadas en el diseño de pavimentos del camino Delicias, mientras que la Tabla 20 muestra el cálculo de espesores de capas de pavimento. Los resultados de la modelación mecánica y verificación de desempeño se muestran en la Tabla 21. Se presentan dos alternativas, para que el Departamento de Ingeniería del Distrito, decida cual se ajusta a sus capacidades técnicas y recursos disponibles, de acuerdo a lo siguiente:

- Opción 1 (BE-CGRE): mejoramiento de capa granular de rodadura y suelo existente con cal (CGRE) en un espesor de 20cm. Luego colocación de una base estabilizada con cemento hidráulico (BE) en un espesor de 20cm. Tratamiento superficial bituminoso (TSB) como superficie de ruedo impermeabilizadora.
- Opción 2 (CGRE): mejoramiento de capa granular de rodadura y suelo existente con cal (CGRE) en un espesor de 30cm. Tratamiento superficial bituminoso (TSB) como superficie de ruedo impermeabilizadora.

Tabla 19. Variables de entrada para diseño de pavimentos de camino Delicias.

ato, parámetro de entrada o cá	lculo inicial	Valor		
Período de Diseño	PD	10 años		
Ejes equivalentes de diseño	W ₁₈	141 075		
Confiabilidad	R	50%		
Desviación normal estándar	Z _R	0.000		
Desviación estándar global	S ₀	0,50		
Índice de servicio inicial	p ₀	4,2		
Índice de servicio al final	p _t	2,5		
Cambio en índice de servicio	ΔPSI	1,7		
CBR en sitio subrasante	%	6% a 10%		
Mr eff subrasante	psi/MPa	5600		
SN _{req}	-	2.26		
Correlaciones utilizadas para	la estimación del r	módulo resilente (Mr) de la subrasante		
Referencia	Rango CBR	Ecuación		
Heukelom & Klomp (1962)	< 7.2 %	Mr(psi) = 1500 * CBR		
CSIR (Witzack el al. 1995)	7.2 % - 20%	$Mr(psi) = 3000 * CBR^{0.65}$		
AASHTO (1993)	> 20%	Mr(psi) = 4326 * ln(CBR) + 241		

Tabla 20. Cálculo de espesores de pavimento camino Delicias (AASHTO 93).

Opción	Capa o material	Origen	Coef. Estruct. a_i	Módulo estimado (psi/MPa)	Coef. drenaje m_i	Espesor (cm)	SN diseño
1	TSB	Nuevo	-	-	-	-	-
(base-	BE	Nuevo	0.15	590000/4068	1.0	20	1.18
cemento y	CGRE	Rehabilitado	0.14	45000/310	1.0	20	1.10
1	SR2	Existente	-	5600/39	-	-	-
suelo-cal)			0		Total	40	2.28
2	TSB	Nuevo			-	-	-
(сара	CGRE	Rehabilitado	0.14	45000/310	1.0	30	1.65
I	SR1	Existente	0.10	10500/72	0.8	20	0.63
existente-	SR2	Existente	a - D	5600/39		-	-
cal)		WAR		- C	Total	30	2.28

Tabla 21. Verificación de desempeño para pavimento camino Delicias.

Onción	771	W 45/	Ahuellamiento (mm)					
Opción	BE	CGRE	SR1	SR2	Total	Criterio	Cumplimiento	
	J 1527 XXX	7,	27-71-2	4.52	4.52	25.0	Si Cumple	
4	7 1 7/1	Vida a 1	fatiga de base	estabilizada (ES	SAL)	70 1	Ourse limite et a	
Į	BE	CGRE	SR1	SR2	Total	Criterio	Cumplimiento	
	5.56X10 ⁵	1.30X10 ¹ 3	W.G. Date	13-110	-	141 075	Si Cumple	
	AL WAY		Ahuellamie	nto (mm)		TOTAL		
	CC	GRE	SR1	SR2	Total	Criterio	Cumplimiento	
2			2.93	7.65	10.68	25.0	Si Cumple	
2	Vida a fatiga capas estabilizadas (ESAL)							
	CGRE 5.99X10^7		SR1	SR2	Total	Criterio	Cumplimiento	
			111927	_	_	141 075	Si cumple	

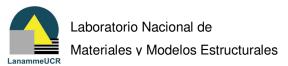
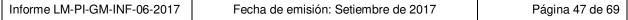
Sección transversal típica y estructuras de pavimento

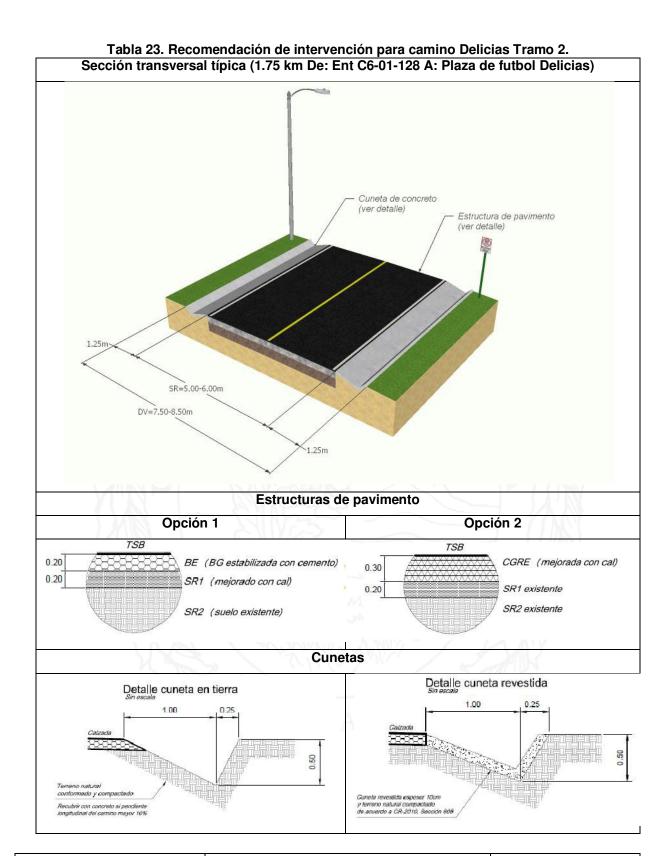
Se dividió el camino en dos tramos en cuanto a la sección transversal:

- Tramo 1: de Escuela Delicias al entronque con camino C6-01-128 (750 m)
- Tramo 2: de entronque con camino C6-01-128 a plaza de futbol Delicias (1.75 km)

La sección transversal típica y las estructuras de pavimento recomendadas para el tramo 1 y 2 del camino Delicias se pueden observar en la Tabla 22 y 23 respectivamente. En el Anexo 8 se incluyen láminas donde se resume la recomendación de intervención para el camino.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 46 de 69
------------------------------	-------------------------------------	-----------------


Tabla 22. Recomendación de intervención para camino Delicias Tramo 1. Sección transversal típica (750 m De: Escuela Delicias A: Ent C6-01-128) Cordón y caño de concreto (ver detalle) Estructura de pavimento (ver detalle) Cuneta (ver detalle) 1.20m SR=6.00-7.00m DV=9.10-10.10m Estructuras de pavimento Opción 1 Opción 2 TSB 0.20 BE (BG estabilizada con cemento) CGRE (mejorada con cal) 0.20 SR1 (mejorado con cal) SR1 existente SR2 existente SR2 (suelo existente) Acera, cordón y caño Cunetas Detalle de acera, cordón y caño Detalle cuneta revestida 1.20 1.00 0.10 0.10 0.15 Guneta revestida espesor 10cm y terreno natural compactado Acera de concreto hidráulico y

Cordón y caño de concreto hidráulico

de acuerdo a CR-2010, Sección 615

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 48 de 69

8.3 Camino C6-01-001 Santa Teresa

El camino C6-01-001 Santa Teresa se evaluó en una longitud total de 2.5 km, dividida en tres tramos como se muestra en la Figura 19.

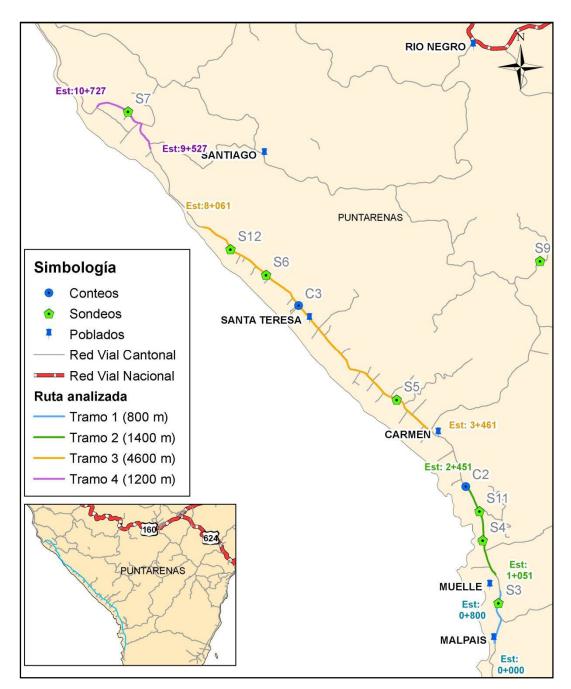
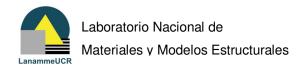



Figura 19. Camino Santa Teresa C6-01-001.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 49 de 69
------------------------------	-------------------------------------	-----------------

Diseño de pavimentos y verificación de desempeño

La Tabla 19 muestra las variables de entrada utilizadas en el diseño de pavimentos del camino Delicias, mientras que la Tabla 20 muestra el cálculo de espesores de capas de pavimento. Se presentan dos alternativas para cada uno de los cuatro tramos del camino. De esta manera el Departamento de Ingeniería del Distrito, puede evaluar y decidir cual alternativa de pavimento se ajusta a sus capacidades técnicas y recursos disponibles. A continuación se describen las alternativas de estructura de pavimento recomendadas:

- Opción 1 (BG): consiste en la colocación de una capa de base granular nueva de 15 cm de espesor sobre la rasante existente. Luego se propone colocar un tratamiento superficial bituminoso (TSB) como superficie de ruedo impermeabilizadora.
- Opción 2 (CGRE): se propone el mejoramiento de capa granular de rodadura (CGR) y relleno existente (RE) un espesor total de 30cm. Luego se propone la colocación de un tratamiento superficial bituminoso (TSB) como superficie de ruedo impermeabilizadora.

Tabla 24. Variables de entrada para diseño de pavimentos de camino Santa Teresa.

Dato, parámetro de entrada o ca	Dato, parámetro de entrada o cálculo inicial			Tramo 4		
Período de Diseño	PD	15 años	15 años	15 años		
Ejes equivalentes de diseño	W ₁₈	169 785	765 530	169 785		
Confiabilidad	R	50%	50%	50%		
Desviación normal estándar	Z _R	0.000	0.000	0.000		
Desviación estándar global	S ₀	0,50	0,50	0,50		
Índice de servicio inicial	p_0	4,2	4,2	4,2		
Índice de servicio al final	pt	2,5	2,5	2,5		
Cambio en índice de servicio	ΔPSI	1,7	1,7	1,7		
CBR en sitio subrasante	%	34%	17%	15%		
Mr eff subrasante	psi/MPa	15496/107	21674/149	17441/120		
SN _{req}	CAN	1.55	1.77	1.48		
Correlaciones utilizadas p	ara la estimaci	ón del módulo res	ilente (Mr) de la sul	orasante		
Referencia	Rango CBR		Ecuación			
Heukelom & Klomp (1962)	< 7.2 %	i	Mr(psi) = 1500 * CBR			
CSIR (Witzack el al. 1995)	7.2 % - 20%	$Mr(psi) = 3000 * CBR^{0.65}$				
AASHTO (1993)	> 20%	Mr(psi) = 4326 * ln(CBR) + 241				

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 50 de 69
------------------------------	-------------------------------------	-----------------

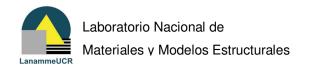
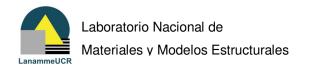
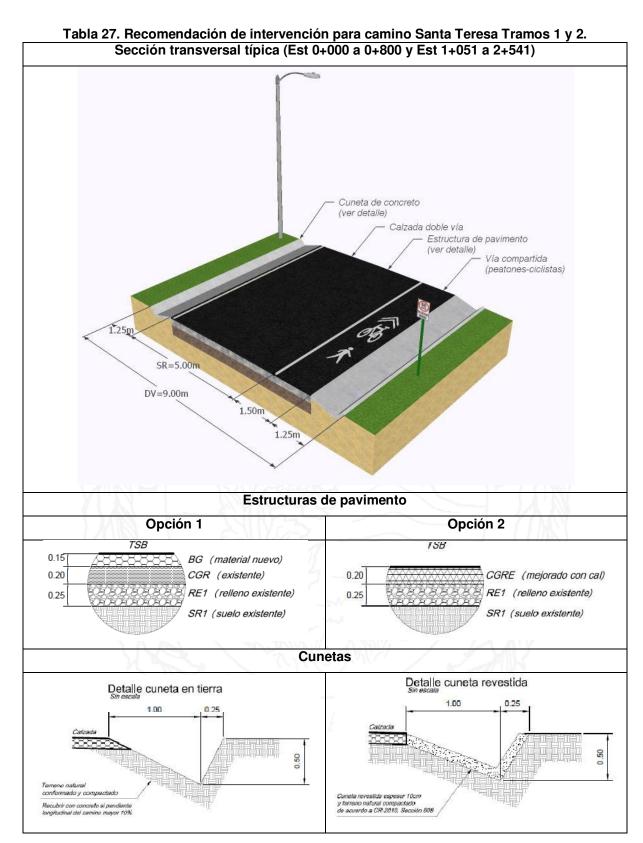



Tabla 25. Cálculo de espesores de pavimento camino Santa Teresa (AASHTO 93).

			Coef.	Módulo	Coef.		
Tramo/	Capa o	Origen	Estruct.	estimado	drenaje	Espesor	SN
Opción	material		a_i	(psi/MPa)	m_i	(cm)	diseño
	TSB	Nuevo	-	-	-	-	-
<u> </u>	BG	Nuevo	0.14	28000/193	0.8	15	0.66
Tramo 1 y 2	CGR	Existente	0.10	14000/97	0.8	20	0.63
Opción 1	RE1	Existente	0.10	14000/97	0.8	25	0.79
- 1	SR1	Existente	0~	15496/107	-	-	-
					Total	60	2.08
	TSB	Nuevo			-	-	-
Tramo 1 y 2	CGRE	Rehabilitado	0.14	45000/310	1.0	20	1.10
Opción 2	RE1	Existente	0.10	14000/97	0.8	25	0.79
Opcion 2	SR1	Existente	-	15496/107		\ -	-
	J73411	7.07			Total	45	1.89
	TSB	Nuevo	-	-	110	1/1/-	-
1	BG	Nuevo	0.14	28000/193	0.8	15	0.66
Tramo 3	CGR	Existente	0.10	14000/97	0.8	20	0.63
Opción 1	RE1	Existente	0.10	14000/97	0.8	30	0.79
) A	RE2-SR1	Existente	1 be >	21674/149	1	1 1 77/1	-
71	XV / ** /	1-30	MARY		Total	65	2.24
1 //	TSB	Nuevo	WIE Z	-3//\=	- \ -	- FAN	-
Tramo 3	CGRE	Rehabilitado	0.14	45000/310	1.0	25	1.38
Opción 2	RE1	Existente	0.10	14000/97	0.8	25	0.79
Opolon 2	RE2-SR1	Existente	Tubber -	21674/149	-		-
(\/	- W	-471101	- L5		Total	50	2.16
1.8\	TSB	Nuevo	6-5	-	-	1 1-1K 1	-
_ X \ '	BG	Nuevo	0.14	28000/193	0.8	15	0.66
Tramo 4	CGR	Existente	0.10	14000/97	0.8	10	0.31
Opción 1	RE1	Existente	0.10	14000/97	0.8	30	0.94
\ \	SR1	Existente	100-20	17441/120	- /- /		-
	MARK		V1 - "	my	Total	55	1.92
	TSB	Nuevo	B NV4-1/.	ANNIX -	/ -/A	AIV-	-
Tramo 4	CGRE	Rehabilitado	0.14	45000/310	1.0	20	1.10
Opción 2	RE1	Existente	0.10	14000/97	0.8	20	0.63
- 1	SR1	Existente	-	17441/120		-	-
ļ		Vene	UNI A	SKI	Total	40	1.73

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 51 de 69
------------------------------	-------------------------------------	-----------------

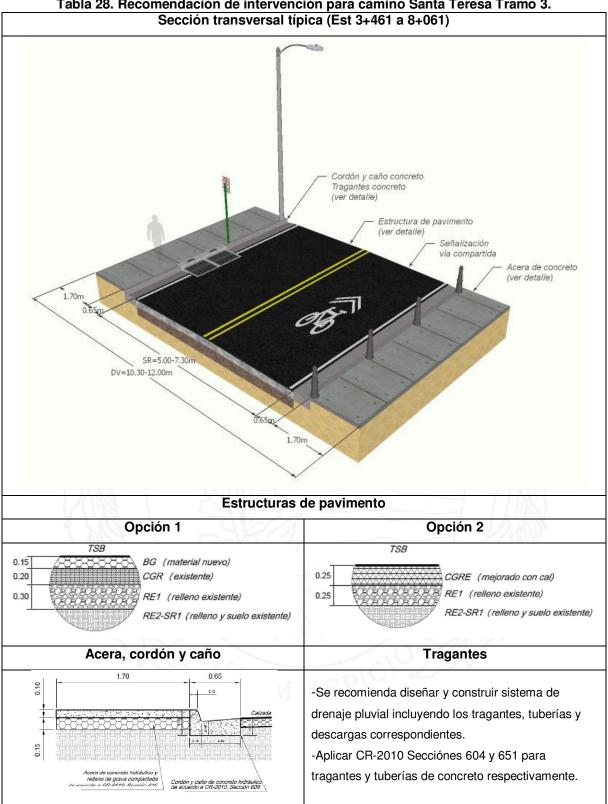
Los resultados de la modelación mecánica y verificación de desempeño se muestran en la Tabla 26.


Tabla 26. Verificación de desempeño para pavimento camino Santa Teresa.

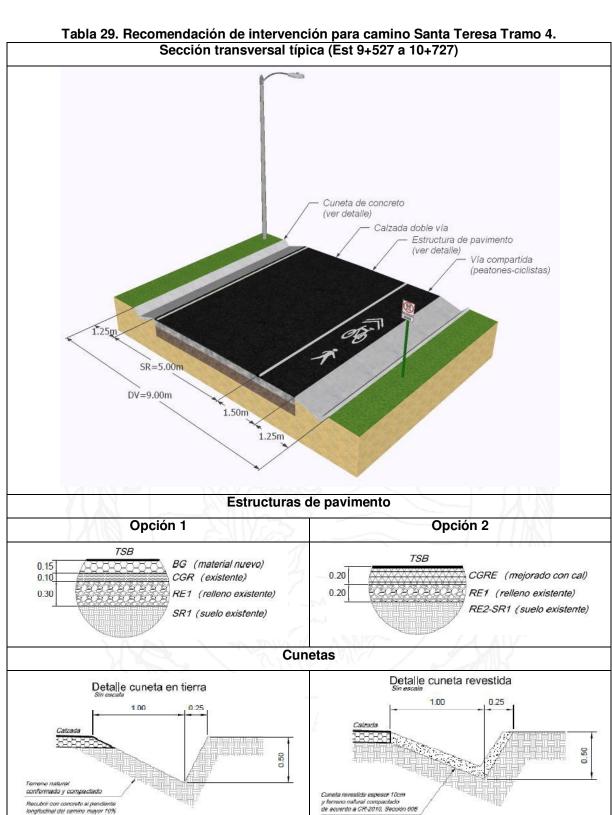
	i doid	-0. 1000	10.0 40	accompt	nio para	parimo	nto oannin	Janua Ten	oou.
Tramo	Opción		Ahuellamiento (mm)						Cumplimiento
		CGRE	BG	CGR	RE1	SR1	Total	Criterio	
Tramos	1	-	9.20	7.67	3.35	3.63	23.54	25.0 mm	Si Cumple
1 y 2	2	-	-	- 3	5.36	4.65	10.01	25.0 mm	Si Cumple
Tramo	1		10.56	7.73	3.46	2.80	24.54	25.0 mm	Si Cumple
3	2	<u>-</u>			5.02	3.46	8.48	25.0 mm	Si Cumple
Tramo	1	l-dad	9.22	5.76	4.03	3.63	22.64	25.0 mm	Si Cumple
4	2	Zar		-	4.86	4.75	9.62	25.0 mm	Si Cumple
T.,,,,,,,	Vida a fatiga capas estabilizadas (ESAL)						111		
Tramo	Opción	CGRE	BG	CGR	RE1	SR1	Total	Criterio	Cumplimiento
Tramos 1 y 2	2	3.29X10^6	-	3	7	$\overline{\mathcal{I}}_{mn}$		169785	Si Cumple
Tramo 3	2	1.33 X10^8	-	YUS B	1	7/\	1	765 530	Si Cumple
Tramo 4	2	3.76X10^6	-7/	VAS			1/-	169 785	Si Cumple

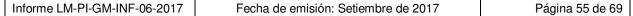
Sección transversal típica y estructuras de pavimento

La sección transversal típica y las estructuras de pavimento recomendadas para cada tramo del camino Santa Teresa se pueden observar de la Tabla 27 y 29. En el Anexo 8 se incluyen láminas donde se resume la recomendación de intervención para el camino.



Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 53 de 69


Tabla 28. Recomendación de intervención para camino Santa Teresa Tramo 3.



Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 54 de 69

Recubrir con concreto si pendiente longitudinal del camino mayor 10%

8.4 Camino C6-01-037 San Isidro

El camino C6-01-037 evaluado tiene una longitud total de 3.5 km, como se muestra en la Figura 20, del cual se evaluaron algunas zonas (sondeos 8, 9 y 10) donde se observaron deterioros severos de la calzada debido a deformaciones o movimientos de la subrasante y falta de drenaje pluvial adecuado.

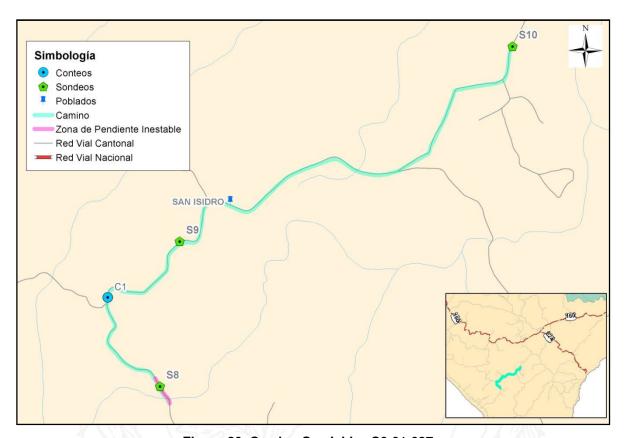


Figura 20. Camino San Isidro C6-01-037.

El mapa de la Figura 20 muestra la ubicación de un tramo de 150m de longitud (color magenta) hacia el final del camino San Isidro, donde el trazado del camino se extiende por una pendiente natural aproximada de 10% en un corte tipo cajón. El terraplén del camino se ha deformado severamente, lo cual destruyó la capa de base y superficie de ruedo como se observa en la Figura 21 de noviembre 2016, posteriormente en febrero 2017 se observa el camino luego de ser reconformado para mejorar la transitabilidad.

Figura 21. Tramo 150 m que presenta deformaciones del terraplén del camino San Isidro.

Durante las visitas al sitio se observó algunos elementos a tomar en cuenta en el análisis:

- Presencia de humedad en cunetas, proveniente de taludes adyacentes y posible nivel freático superficial.
- Deformaciones leves en talud adyacente lado izquierdo.
- Humedad en la plataforma del camino.
- Deformaciones en plataforma del camino en la dirección de la pendiente.

Los anteriores podrían ser indicios de inestabilidad de la ladera donde se ubica el camino, lo cual se podría haberse combinado con exceso de humedad del suelo y falta de drenaje

adecuado para generar severas deformaciones de la plataforma del camino en la dirección de la pendiente.

Por lo tanto, las recomendaciones que se indican a continuación, están dirigidas a mejorar las condiciones de drenaje del camino, evacuación de agua pluvial y estructura de pavimento. Sin embargo, no se aborda el análisis de estabilidad del la ladera (incluyendo el talud adyacente del lado izquierdo), para lo cual se recomienda consultar con un especialista en geología o geotecnia, que realice un análisis específico del sitio.

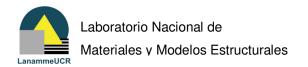

Las otras zonas (sondeo 9 y 10) donde se ha deteriorado la calzada, se considera se deben principalmente a deformaciones del suelo subrasante por deficiencia en el drenaje pluvial como se muestra en la Figura 22. Las recomendaciones que se realizan para estos sitios, incluyen el mejoramiento del drenaje superficial, subterráneo y estructura de pavimentos.

Figura 22. Otras zonas con deformaciones de la calzada en camino San Isidro.

Diseño de pavimentos y verificación de desempeño

Las variables de entrada utilizadas para el diseño de pavimentos recomendado y cálculo de espesores por medio de la metodología AASHTO 93 se muestran en la Tabla 30 y 31 respectivamente. Los resultados de la modelación mecánica y verificación de desempeño se muestran en la Tabla 32. Se presentan dos alternativas, tanto para el tramo de 150 m que presenta deformaciones severas (sondeo 8) como para las otras zonas evaluadas (sondeo 9 y sondeo 10). De esta manera, el Departamento de Ingeniería del Distrito

puede evaluar y decidir finalmente cual alternativa de pavimento se ajusta a sus capacidades técnicas y recursos disponibles.

Tabla 30. Variables de entrada para diseño de pavimentos de camino San Isidro.

Dato, parámetro de entrada o cá	lculo inicial	Tramo 150 m (pendiente)	Otras zonas
Período de Diseño	PD	15 años	15 años
Ejes equivalentes de diseño	W ₁₈	625 497	625 497
Confiabilidad	R	50%	50%
Desviación normal estándar	Z_{R}	0.000	0.000
Desviación estándar global	S_0	0,50	0,50
Índice de servicio inicial	p_0	4,2	4,2
Índice de servicio al final	p _t	2,5	2,5
Cambio en índice de servicio	ΔPSI	1,7	1,7
CBR en sitio subrasante	%	7%	13%
Mr eff subrasante	psi/MPa	12514/86	15892/110
SN _{req}	3 -	2.12	1.93
Correlaciones utilizadas para	la estimación	del módulo resilente (Mr) de la	subrasante
Referencia	Rango CB	R Ecuaci	ón
Heukelom & Klomp (1962)	< 7.2 %	Mr(psi) = 15	00 * CBR
CSIR (Witzack el al. 1995)	7.2 % - 20	Mr(psi) = 300	$0 * CBR^{0.65}$
AASHTO (1993)	> 20%	Mr(psi) = 4326*	ln(CBR) + 241

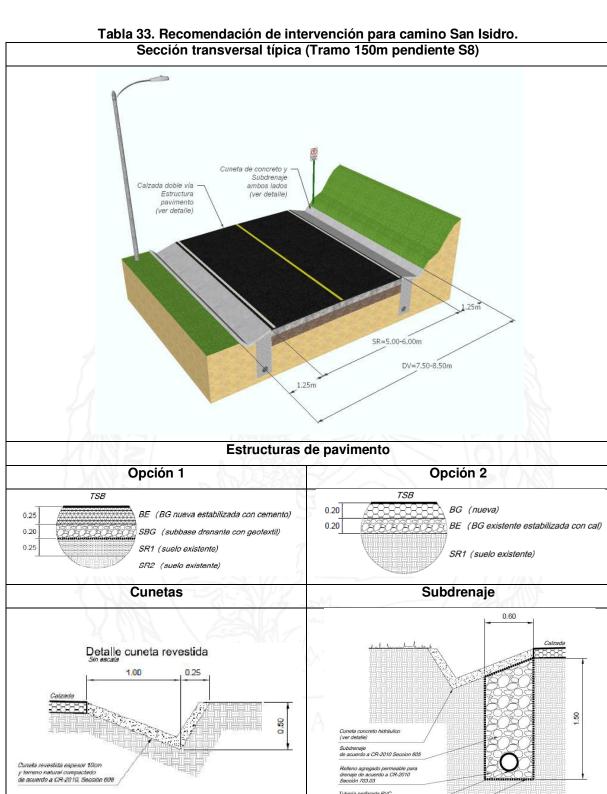
Tabla 31. Cálculo de espesores de pavimento camino San Isidro (AASHTO 93).

Tramo/ Opción	Capa o material	Origen	Coef. Estruct. a_i	Módulo estimado (psi/MPa)	Coef. drenaje m_i	Espesor (cm)	SN diseño
Tramo 150	TSB	Nuevo		_	-	779.AV	-
Traillo 150	BE-CEM	Nuevo	0.15	590000/4068	1.0	25	1.48
(pendiente)	SBG	Nuevo	0.11	14000/97	0.8	20	0.69
" "	SR1	Existente	0.10	14000/97	0.8	25	0.79
Opción 1	SR2	Existente	16-59 -	12514/86	- /	/ / /#N'Y	-
- Y \	11/1/11	4 = 2 = 3	Nh /		Total	60	2.96
Tramo 150	TSB	Nuevo	V-L- W	-	<i> </i>	antill	-
Traillo 130	BG-CAL	Rehabilitado	0.14	45000/310	1.0	20	1.10
(pendiente)	SBG	Nuevo	0.11	14000/97	0.8	20	0.69
	SR1	Existente	0.10	14000/97	0.8	25	0.79
Opción 2	SR2	Existente		12514/86		MI 2 -	-
	11 70-		Calleton	/ N. 10.	Total	60	2.58
•	TSB	Nuevo	ı	-/ (7-//	-	-
Otras zonas	BE-CEM	Nuevo	0.15	590000/4068	1.0	25	1.48
Opoión 1	SBG	Nuevo	0.11	14000/97	0.8	20	0.69
Opción 1	SR1	Existente	CM A	15892/110	-	-	-
				F. Second	Total	40	2.17
	TSB	Nuevo	-	-	_	-	-
Otras zonas	BG	Rehabilitado	0.14	28000/ 193	0.8	20	0.88
Onción O	BE-CAL	Rehabilitado	0.14	45000/310	1.0	20	1.10
Opción 2	SR1	Existente	-	15892/110	-	-	-
					Total	40	1.98

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 59 de 69
------------------------------	-------------------------------------	-----------------

Tabla 32. Verificación de desempeño para pavimento camino San Isidro.

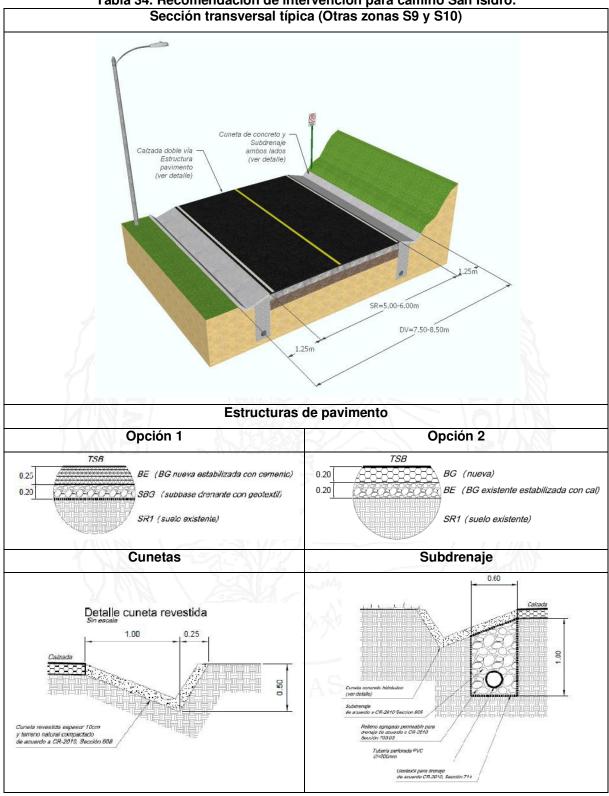
Tramo	Opción	Ahuellamiento (mm)								Cumplimiento
		BE (CEM)	BE (CAL)	BG	SBG	SR1	SR2	Total	Criterio	Cumpillicino
Tramo 150m	1	-	-	-	1.16	0.86	2.50	4.52	25.0 mm	Si Cumple
	2	-	-	-	5.55	2.77	4.11	12.43	25.0 mm	Si Cumple
Otras zonas	1	-	-	-	1.19	2.60	-	3.79	25.0 mm	Si Cumple
	2	-	-	13.80	-	4.75	-	18.55	25.0 mm	Si Cumple
Tramo	Opción	Vida a fatiga capas estabilizadas (ESAL)								
		BE (CEM)	BE (CAL)	BG	SBG	SR1	SR2	Total	Criterio	Cumplimiento
Tramo 150m	1	1.78 x10^6	-1:37	74	S-E		-		625 497	Si Cumple
	2	1750	3.11 x10 ⁶	B	-		9		625 497	Si Cumple
Otras zonas	1	861 346	67	-	-	-	-	(0; 1)	625 497	Si Cumple
	2	AV.	1.15 x10^12	- ^	-	1	17/	1/2	625 497	Si Cumple


Sección transversal típica y estructuras de pavimento

La sección transversal típica y las estructuras de pavimento recomendadas para el camino San Isidro se pueden observar de la Tabla 33 y 34. En el Anexo 8 se incluyen láminas donde se resume la recomendación de intervención para el camino.

En el camino San Isidro, se tienen suelos arcillosos de alta plasticidad tipo CH (A-7-6), por lo que se recomienda mejorar tanto los drenajes como la estructura de pavimento, en los sitios donde se han presentado deformaciones. Se debe evitar que la subrasante se sature por ascenso del nivel freático o escorrentía de agua pluvial, por lo tanto se recomienda implementar subdrenajes" tipo francés" en ambos lados de la calzada y cunetas revestidas en estas zonas. Además, se deben colocar los pasos de alcantarilla requeridos en los sitios donde se deba descargar agua pluvial hacia cauces cercanos. Por ejemplo en la zona del sondeo 9 (Figura 22), claramente se requiere la colocación de un paso de alcantarilla que conduzca el agua pluvial hacia la quebrada local, para evitar que la plataforma del camino se sature, ya que la topografía en este punto forma una zona baja, donde el agua se acumula.

Informe LM-PI-GM-INF-06-2017	Fecha de emisión: Setiembre de 2017	Página 60 de 69
------------------------------	-------------------------------------	-----------------



Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 61 de 69

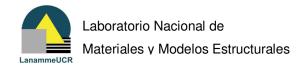
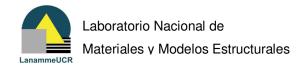

Geotextil para drenaje de acuerdo CR-2010, Sección 71-

Tabla 34. Recomendación de intervención para camino San Isidro.

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 62 de 69

9. Conclusiones

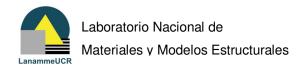

Sobre el material granular de la cantera local Tajo Delicias

- El material granular de muestra obtenido de la cantera local Tajo Delicias en San Isidro de Cóbano, es un material extraído directamente de las paredes de la cantera, sin procesamiento de selección, lavado o quebrado. Posee una leve exceso de sobretamaños mayores a 50mm y finos con exceso de plasticidad, lo cual genera incumplimiento de las especificaciones del CR-2010 para bases y subbases, sin embargo el material podría utilizarse como capa granular de rodadura o lastrado para dar transitabilidad a vía en tierra o lastre en mala condición.
- El agregado no presenta buen comportamiento al ser estabilizado con emulsión de rompimiento lento catiónica tipo CSS-1h suministrada por RECOPE, ya que no cumple con el recubrimiento y adhesión mínimos recomendables en la metodología de diseño aplicada.
- Al estabilizar el agregado con cemento hidráulico, no se cumple con la resistencia a la compresión inconfinada a los 7 días de 2.8MPa, indicada en el CR-2010, sin embargo, se podría utilizar el agregado para capas granulares mejoradas con cemento en dosificaciones entre 2.5% y 3.5% y obtener resistencias entre 0.8 MPa y 1.8 MPa.
- Al estabilizar el agregado con cal hidratada, tampoco se logró exceder el requerimiento de resistencia la compresión inconfinada del CR-2010 para una base estabilizada. Sin embargo, el comportamiento mostrado fue mejor al cemento, al dosificar entre 1.5% y 2.8% se obtuvieron resistencias entre 1.0MPa y 2.2 MPa. Esto indica que se podría construir capas granulares mejoradas con cal con el material analizado que permiten obtener un aporte estructural valioso.

Sobre el camino Montezuma C6-01-128

 El TPD estimado en este camino fue de 279 vehículos/día con 2.2% de vehículos pesados. Se evaluó una sección de 500m que tiene una pendiente promedio de 10%. Se tiene un espesor promedio de 10 cm de capa de material granular combinado con suelo sobre la subrasante que corresponde a suelos arenosos-

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 63 de 69

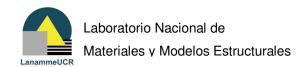

limosos cuyo resultado del ensayo de perforación con DCP es de CBR en sitio promedio de 77% en la subrasante. Además, se observó el afloramiento de roca natural en algunos sitios de esta sección del amino.

Sobre el camino Delicias C6-01-038

- El TPD estimado de este camino fue de 674 vehículos/día, con 12% de vehículos pesados.
- Se evaluó una sección de 2.5 km del camino desde la Escuela Delicias hasta la Plaza de futbol, donde la superficie de ruedo existente es una capa de suelo combinado con grava con espesor de 20 a 25 cm, sobre el suelo subrasante tipo limoso elástico con arena y grava de baja capacidad de soporte con valores de CBR en sitio promedio en la subrasante de 10% a 11%.

Sobre el camino Santa Teresa C6-01-001

- El TPD estimado de este camino fue de 1712 vehículos/día, con 9% de vehículos pesados en la zona de Santa Teresa, mientras que en Malpaís fue de 1436 vehículos/día con 4% de vehículos pesados.
- Se evaluaron cuatro secciones que suman una longitud total de 8 km, donde se observó una capa de material granular de rodadura existente con espesor variable entre 10 y 25 cm, sobre un relleno de material granular combinado con suelo tipo gravas arcillosas y limosas en espesores variables de 20 a 60 cm. Las mediciones de CBR en sitio con el DCP indicaron valores promedio de 17% a 31 % para la subrasante.
- Se evaluó el material de capa granular de rodadura existente en la rasante del camino Santa Teresa para ser estabilizado con emulsión, cemento y cal. Los mejores resultados se obtuvieron con la cal hidratada, ya que se alcanzó la resistencia indicada en el CR-2010 de 2.8 MPa a los 7 días con dosificaciones entre 2.6 y 5.0%. Con cemento hidráulico se alcanzó la misma resistencia de especificación con dosificaciones entre 3.0% y 4.7%. Mientras que se observó que el comportamiento del material al mezclarlo con emulsión asfáltica no es ideal, ya que no se obtiene buen recubrimiento y tampoco adhesión entre las partículas del agregado.



Sobre el camino San Isidro C6-01-037

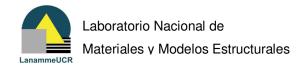
- El TPD estimado de este camino fue de 1834 vehículos/día, con 8.5% de vehículos pesados.
- Se realizaron sondeos en algunos sitios donde se observaron deterioros de la superficie de ruedo y en especial un tramo de 150m, hacia el final de la sección evaluada, donde se presentaron severas deformaciones de la estructura de pavimento.
- En las zonas de los sondeos 9 y 10 se tiene un TSB como superficie de ruedo, luego material de base granular mejorada con cemento en espesor aproximado a 30 cm, sobre subrasante que presenta valores de CBR en sitio entre 68% y 13%.
- En el tramo de 150 m donde se presentan severas deformaciones de la estructura de pavimentos del camino, se observó que el TSB se destruyó completamente y se mantiene un material granular combinado con suelo en espesor aproximado de 20 cm con CBR en sitio promedio de 12% sobre suelo subrasante tipo arcilla plástica con CBR en sitio promedio de 7% a 9%.
- En el tramo de 150 m se observó presencia de humedad proveniente del talud del lado izquierdo y nivel freático superficial. Además, no se descarta que pueda existir inestabilidad global del terreno por un posible deslizamiento local, lo cual debería ser evaluado y determinado por un geólogo o ingeniero geotecnista.

10. Recomendaciones.

- Se recomienda revisar la condición y adecuado funcionamiento de las estructuras de drenaje pluvial existente a lo largo de los caminos a intervenir. Esto incluye verificar la ubicación, cantidad, condición y dimensiones de las cunetas, los pasos de alcantarilla transversales, cabezales, sangradores y canales de salida de agua pluvial hacia cauces cercanos. Lo anterior para evitar que la nueva estructura de pavimento a construir sufra deterioros por el inadecuado drenaje de aguas pluviales.
- La definición final acerca del tipo secciones transversales a utilizar, de acuerdo a lo recomendado en este informe, deberá ser formulada finalmente por el Departamento

de Ingeniería del Distrito, de acuerdo a su criterio técnico y análisis de los recursos disponibles.

- Se recomienda que el diseño final para el mejoramiento de los caminos, considere espacio y/o señalización para todos los usuarios de la vía, incluyendo peatones y ciclistas. También se recomienda la inclusión de los elementos de accesibilidad, principalmente en los caminos más urbanos (por ejemplo el camino Santa Teresa), por ejemplo rampas y superficies táctiles para no videntes.
- Se recomienda elaborar planos constructivos para la formulación del proyecto de intervención del camino, de manera que se detalle claramente el alcance y especificaciones de las obras a realizar.

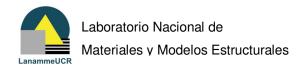

Sobre el material granular de la cantera local Tajo Delicias

- Se recomienda consultar con un geólogo experto en el análisis de fuentes de materiales para que estime el potencial y factibilidad de realizar un proceso de extracción formal de agregado en la cantera local Tajo Delicias. Este profesional podría determinar el tipo, origen, volumen disponible de material granular e impacto ambiental asociado a la extracción.
- Se recomienda que previo a realizar un proyecto de construcción de carretera, donde se utilice el agregado de esta fuente para ser estabilizado con cemento o cal, se realice el diseño de mezcla correspondiente dada la variabilidad que tiene el material debido al proceso de extracción no formal.

Sobre el camino Santa Teresa

- Se recomienda que previo a la intervención de la estructura de pavimentos del camino, se intervenga el sistema de drenaje pluvial, sanitario y potable para evitar futuras excavaciones a las obras viales recién terminadas, esto en coordinación con las instituciones pertinentes regentes de la materia.
- Se recomienda que al menos en el tramo 3 (Intersección Playa Carmen-El Peñon) se urbanice la vía y el sistema de evacuación de agua pluvial, se diseñe y construya por medio de cordón y caño, tragantes y descargas a los cuerpos de agua más cercanos de acuerdo a las normas definidas por la institución regente en la materia.

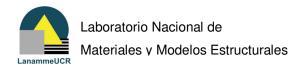
Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 66 de 69



 Se recomienda considerar a todos los usuarios de la vía en el diseño final de la intervención del camino, incluyendo peatones, ciclistas y motorizados, previendo un espacio y señalización adecuada para todos.

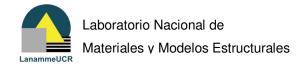
Sobre el camino San Isidro

- Las recomendaciones realizadas en este informe para el tramo de 150 m se limitan a mejorar las condiciones de drenaje de agua pluvial y subterránea observados en el sitio y que podrían ser parte del origen de los problemas de estabilidad del camino. Por esta razón, se recomienda la colocación de dos trincheras de subdrenaje a ambos lados del camino y una capa de subbase granular drenante, con geotextil como separador.
- Se recomienda que el tramo de 150 m hacia el final del camino, sea analizado por un geólogo o ingeniero geotecnista para que determine si el sitio es parte de un deslizamiento o por el contrario los problemas de estabilidad del camino son consecuencia de la tipología de suelos y presencia de humedad solamente.



11. Referencias bibliográficas

- American Association of State Highway and Transportation Officials. (1993). *Guide for the Design of Pavement Structures* [Guía para el Diseño de Estructuras de Pavimento]. (7ta Ed), Washington, D.C., EEUU: Autor.
- Arias Barrantes, E. (2014). Recomendaciones Técnicas para el Diseño Estructural de Pavimentos Flexibles con la Incorporación de Criterios Mecánicos-Empíricos. San José: PITRA, Laboratorio Nacional de Materiales y Modelos Estructurales.
- Department of Transport, Republic of South Africa. (1996). *Structural Design for flexible pavement for interurban and rural roads (TH4)*. Pretoria, South Africa.
- Erasmus-Liebennberg, J. J. (2003). A Structural Design Procedure For Emulsion Treated Pavemente Layers. University of Pretoria, Faculty of Engineering, Built Environment and Information Technology, Pretoria.
- Instituto Metereológico Nacional. (n.d.). *Atlas Cilmatológico Interactivo*. Costa Rica: Autor. Descargado de: http://www.imn.ac.cr/mapa_clima/interactivo/index.html
- Ministerio de Obras Públicas y Transportes (2013). Anuario de información de tránsito 2012. Descargado de: http://www.mopt.go.cr/planificacion/carreteras/AnuarioTr%C3%A1nsito2012.pd
- Ministerio de Obras Públicas y Transportes. (2010). *Manual de Especificaciones* Generales para la Construcción de Carreteras, Caminos y Puentes CR-2010.
- Ministerio de Obras Públicas y Transportes (2007). Oficio DVOP-5170-07. Lineamientos diseño de pavimento por Ing. Pedro Castro PhD.
- Ulloa, Á; Badilla, G; Allen, J; Sibaja, D(2007). Encuesta de Carga. Unidad de Investigación. Proyecto #PI-01-PIIVI-2007. Laboratorio Nacional de Materiales y Modelos Estructurales. San José, Costa Rica: LanammeUCR.
- Yang H. Huang. (2004). *Pavement Analysis and Design* [Análisis y Diseño de Pavimentos]. (2da Ed), New, Jersey, EEUU: Prentice Hall.


Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017 Página 68 de 69

12. Anexos

Anexo	Contenido		
1	Informes de laboratorio (Material cantera local Tajo Delicias)		
0	Resistencia compresión inconfinada con cemento y cal (Material cantera local		
2	Tajo Delicias)		
3	Datos de conteos vehiculares		
4	Datos de sondeos a cielo abierto		
5	Informes de laboratorio caracterización de suelos (Sondeos)		
6	Estimación CBR en sitio con ensayos DCP		
7	Informes de laboratorio de material existente camino Santa Teresa y resultados		
′	de estabilización (cemento y cal)		
8	Recomendaciones de secciones transversales y estructuras de pavimento		

No. de informe: I-1545-16

Informe de Ensayo

RC-80 v.06 (Sistema de Gestión de Calidad, LanammeUCR. Norma INTE ISO/IEC 17025:2005)

ST- 1411 -16

1. Información del cliente:

Nombre:

Unidad de Gestión Municipal, PITRA

Ing. Alonso Ulate Castillo

Proyecto:

CARACTERIZACIÓN BÁSICA DE MATERIALES GRANULARES

Domicilio:

Universidad de Costa Rica, San Pedro, Montes de Oca, San José.

2. Método de ensayo:

ASTM C136 (**). Procedimiento para el análisis por mallas de agregado fino y grueso.

AASHTO T 180 (**). Método estándar de ensayo para la relación densidad-humedad de materiales granulares usando mazo de 4,54 kg y una caída de 457 mm.

AASHTO T 89 y AASHTO T 90 (**). Métodos estándar de ensayo para la determinación de los límites de Atterberg.

- (*) Ensayo acreditado. Ver alcance en www.eca.or.cr
- (**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

No. de identificación: Descripción:

M-2525 -16	3 Sacos y medio con grava de tajo (veta superior), identificados como: M1.
M-2526 -16	3 Sacos y medio con grava de tajo (veta inferior), identificados como: M2.
M-2727 -16	Combinación de dos materiales granulares 2525-16 y 2526-16 en proporciones iguales.

No. de informe: I-1545-16

Aportadas por:

Ing. Alonso Ulate

Fecha de recepción:

2016/10/20

Fecha de realización del ensayo:

2016/11/14 al 2016/11/23

4. Información del muestreo:

NA

5. Resultados:

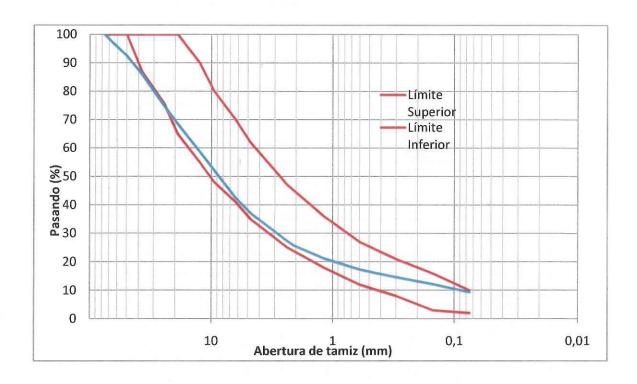
El material indicado se conformó combinando en partes iguales los dos materiales (2526-16 y 2526-16), según lo indicó el cliente.

Posteriormente se cuarteó el material para llevar a cabo los ensayos de análisis granulométrico, límites de Atterberg y Próctor modificado.

LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

Tabla Nº 1: Resultados del análisis granulométrico Muestra: 2727-16

Tamiz	Por	centaje	Especi	ficacion ¹
Pulg.	mm.	Pasando (%)	Granulometrí	a recomendada
			Min	Max
3"	76,0	100,0	100,0	100,0
2 1/2 "	64,0	96,8	100,0	100,0
2"	50,0	92,5	100,0	100,0
1 1/2"	37,5	86,0	87,0	100,0
1"	25,0	75,1	76,0	100,0
3/4"	19,0	68,5	65,0	100,0
1/2"	12,5	58,7	55,0	90,0
3/8"	9,5	52,1	48,0	80,0
1/4"	6,3	42,4	41,0	70,0
Nº 4	4,8	37,1	35,0	62,0
Nº 8	2,4	27,2	25,0	47,0
Nº 10	2,1	25,8		-
Nº 16	1,2	21,2	18,0	36,0
Nº 30	0,6	17,3	12,0	27,0
Nº 40	0,4	15,9	10,0	24,0
Nº 50	0,3	14,6	8,0	21,0
Nº 100	0,2	12,2	3,0	16,0
Nº 200	0,1	9,3	2,0	10,0


¹ Referencia Surafricana: Wirtgen. Wirtgen Cold Recycling Technology. Windhagen: Wirtgen GmbH, 2012.

Gráfica Nº 1: Granulometría del material ensayado Muestra: 2727-16

LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

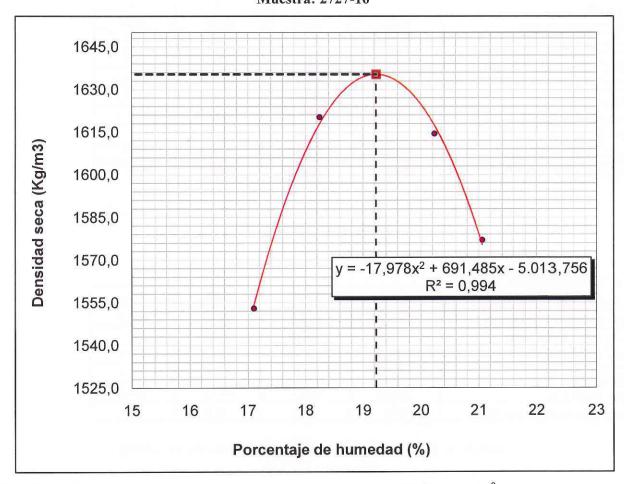
Tabla Nº 2: Resultados de densidad máxima seca del ensayo de densidad Muestra: 2727-16

Ensayo No.	1	2	3	4
Masa de muestra seca	2000	2000	2000	2000
Porcentaje agua adicionado (%)	0,0%	4,0%	2,0%	6,0%
Masa de agua adicionada (g)	0	80	40	120
Masa húmeda + molde (g)	5877,4	5993,1	5969,3	5964,8
Masa del molde, (g)	4159,2	4159,2	4159,2	4159,2
Masa húmeda, (g)	1718,2	1833,9	1810,1	1805,6
Volumen del molde, (cm³)	945	945	945	946
Densidad húmeda, (Kg/m³)	1818,7	1941,2	1916,0	1909,2
Densidad seca, (Kg/m³)	1553,1	1614,6	1620,3	1577,1

Tabla Nº 3: Resultados de humedad óptima en el material analizado Muestra: 2727-16

Identificación de bandeja	1	2	3	4
Porcentaje agua adicionado (%)	0,0%	4,0%	2,0%	6,0%
Masa húmedad + bandeja (g)	663,2	678,2	643,4	581,3
Masa seca + bandeja (g)	583,9	584,6	562,9	501,3
Masa bandeja (g)	120,3	121,9	121,7	121,4
Masa de agua (g)	79,3	93,6	80,5	80,0
Masa de seca (g)	463,6	462,7	441,2	379,9
Porcentaje de humedad (%)	17,1	20,2	18,2	21,1

Tabla Nº 4: Resultados de los ensayos de límites de Atterberg Muestra: 2727-16


Limite líquido (LL):	56
Limite plástico (LP):	37
Índice plasticidad (IP):	19

Gráfica Nº 2: Relación densidad - humedad del material Muestra: 2727-16

Densidad máxima seca:	1635,4	Kg/m³
Porcentaje óptimo humedad:	19	%
Densidad humeda:	1950	Kg/m³
METODOLOGIA	"A"	
No.Capas	3	
No.Golpes/ capa	25	
Molde	4"	

LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

No. de informe: I-1545-16

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Preparó:

Ing. Andrea Ulloa Calderón

Jefe Laboratorio de Mezclas

Bituminosas

Revisós

Ing. Fabián Elizondo Arrieta, MBA

Coordinador Laboratorios de Infraestructura Vial Aprobó:

Ing. Alejandro Navas Carro, M.Sc.

Director LanammeUCR

Página 7 de 7ucr

Laboratorio Nacional de Materiales y Modelos Estructurales U.C.R.

Informe de Ensayo

RC-80 v.07 (Sistema de Gestión de Calidad, LanammeUCR. Norma INTE ISO/IEC 17025:2005)

ST-0165-17

1. Información del cliente:

Nombre:

Unidad de Gestión Municipal.

Proyecto:

Abrasión.

Domicilio:

400 metros norte de Muños & Nanne, San Pedro de Montes de Oca.

2. Método de ensayo:

IT-CA-07 (ASTM C 131) (**)

Determinación de la resistencia a la degradación de agregados gruesos menores que 37,5 mm por abrasión e impacto en la máquina.

Alcance disponible en www.eca.or.cr

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr. (**) Ensayo no acreditado

3. Información de las muestras o especímenes de ensayo:

No. de identificación: Descripción:

2525-16

2526-16

3 Sacos y medio con grava de tajo (veta superior). Identificados por el cliente como: M1.

3 1

3 Sacos y medio con grava de tajo (veta inferior). Identificados por el

cliente como: M2.

2727-16

8 Sacos con material granular, combinación de las muestras M-2525-16 y

M-2526-16.

Aportadas por:

Muestra: 2525-16

Aportada por: Ing. Alonso Ulate.

Muestra: 2526-16

Aportada por: Ing. Alonso Ulate.

Muestra: 2727-16

Aportada por: Ing. Alonso Ulate.

Fecha de recepción:

Muestras: 2525-16 y 2526-16 Fecha de recepción: 2016/10/20

Muestra: 2727-16

Fecha de recepción: 2016/11/21

Fecha de realización del ensavo:

2017/02/17-2017/02/21

4. Información del muestreo:

Fecha de muestreo:

Muestra: 2525-16

Fecha de muestreo: 2016/10/13

Muestra: 2726-16

Fecha de recepción: 2016/10/14

Ubicación:

Tajo las Delicias, San Isidro.

Procedimiento de muestreo:

Muestreo de agregado realizado por la Unidad de Gestión Municipal de acuerdo a la norma ASTM D-75. Personal responsable de las muestras: Ing. Alonso Ulate.

Condiciones ambientales:

No aplica pues los especímenes en el laboratorio se

acondicionan.

5. Resultados:

Tabla 1. Resultados del ensayo para determinar la resistencia a la degradación de agregados gruesos menores que 37,5 mm por abrasión e impacto en la Máquina de las Ángeles.

ABRASIÓN	DESGASTE	
TIPO	(%)	
A	39,1	

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Preparó:	Revisó:	Aprobó:
	Carllerus -	
Ing. Einer Rodriguez Rojas Jefe Laboratorio de Concreto y Agregados	Ing. Guillermo González Beltrán, Ph.D. Coordinador General de Laboratorios	Ing. Alejandro Navas Carro, M.Sc. Director LanammeUCR

Informe de Ensayo

RC-80 v.07 (Sistema de Gestión de Calidad, LanammeUCR. Norma INTE ISO/IEC 17025:2005)

ST-0211-17

1. Información del cliente:

Nombre:

Unidad de Gestión Municipal.

Proyecto:

Distrito Cóbano Puntarenas.

Domicilio:

400 metros norte de Muños & Nanne, San Pedro de Montes de Oca.

2. Método de ensayo:

IT-CA-01 (ASTM C 702) (*)

Procedimiento para reducir muestras de agregado a tamaños de ensayo.

IT-CA-02 (ASTM C 136) (*)

Procedimiento para el análisis por mallas de agregado fino y grueso.

IT-CA-03 (ASTM C 117) (*)

Método para determinar el material más fino que 0,075 mm por lavado en malla de 0,075 mm (No. 200).

IT-CA-12 (ASTM D 3744) (*)

Método estándar de ensayo para el índice de durabilidad en agregados.

Alcance disponible en www.eca.or.cr

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr.

3. Información de las muestras o especímenes de ensayo:

No. de identificación:

Descripción:

342-17

3 sacos (aprox 90 kg), Grava, Tajo Delicias, Cobano. Identificados como:

Cobano, Tajo Delicias.

Aportadas por:

Ing. Alonso Ulate.

Fecha de recepción:

2017/02/28

Fecha de realización del ensayo:

2017/03/07 - 2017/03/21

4. Información del muestreo:

Fecha de muestreo:

2016/02/24

Ubicación:

Tajo las Delicias, Cóbano.

Procedimiento de muestreo:

Muestreo de agregado realizado por la Unidad de Gestión Municipal de acuerdo a la norma ASTM D-75. Personal responsable de las muestras: Ing. Alonso Ulate.

Condiciones ambientales:

No aplica pues los especímenes en el laboratorio se acondicionan.

5. Resultados:

Tabla 1. Resultado del análisis granulométrico de agregado por mallas.

MALLA No.	ABERTŲRA (mm)	MASA RET. (g)	% RET.	%RET. AC.	%PAS.
1 1/2"	37,5	1979,80	8	8	92
1"	25,0	2606	11	20	80
3/4"	19,0	2539	11	30	70
1/2"	12,5	2472	11	41	59
3/8"	9,50	1707	7	48	52
Nº 4	4,75	2853	12	61	39
Nº 8	2,36	2050	9	69	31
Nº 10	2,00	422	2	71	29
Nº 16	1,18	1167	5	76	24
Nº 20	0,85	548	2	78	22
Nº 30	0,60	476	2	80	20
Nº 40	0,43	353	2	82	18
Nº 50	0,30	309	1	83	17
Nº 60	0,25	148	1	84	16
Nº100	0,15	341	1	85	15
Nº200	0,08	373	2	87	13
			LAVA	ADO MALLA # 200	30

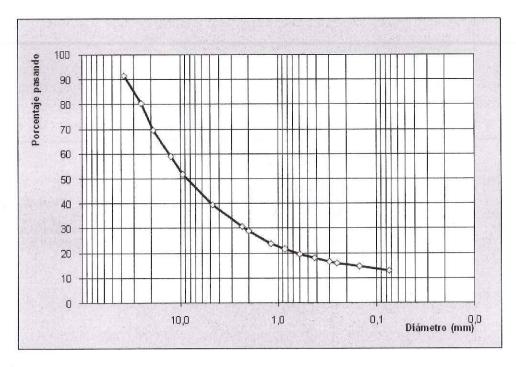


Gráfico 1. Granulometría de agregados.

Tabla 2. Resultados del ensayo para la determinación el índice de durabilidad en la porción gruesa agregado aportado.

IDENTIF.	INDICE DE
MUESTRA	DURABILIDAD
1	50
2	50
3	49

Tabla 3. Resultados del ensayo para la determinación el índice de durabilidad en la porción fina del agregado aportado.

IDENTIF.	LECTURA	LECTURA	INDICE DE
MUESTRA	ARCILLA	ARENA	DURABILIDAD
1	186	80	44
2	196	70	36
3	192	72	38

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Preparó:

Ing. Einer Rodriguez Rojas Jefe Laboratorio de Concreto y Agregados Revisó:

Ing. Luis Carlos Meseguer Quesada, MBA. Coordinador de Laboratorios

de Infraestructura Civil

Aprobó:

Ing. Alejandro Navas Carro, M.Sc.

Director LanammeUCR

Informe de Ensayo

RC-80 v.07 (Sistema de Gestión de Calidad, LanammeUCR. Norma INTE ISO/IEC 17025:2005)

ST-0235-17

1. Información del cliente:

Nombre:

Unidad de Gestión Municipal.

Proyecto:

Distrito Cóbano, Puntarenas.

Domicilio:

400 metros norte de Muñoz y Nanne, San Pedro, Montes de Oca, San José.

2. Método de ensayo:

IT-GC-01 (ASTM D 422) (**)

Método de ensayo para el análisis de tamaño de partículas de suelo (vía seca y húmeda).

IT-GC-04 (ASTM D 854) (*)

Procedimiento para determinar la gravedad específica del suelo mediante un picnómetro con agua.

IT-GC-05 (ASTM D 4318) (*)

Procedimiento para determinar el límite líquido, límite plástico e índice de plasticidad de un suelo.

IT-GC-06 (AASHTO T 99) (*)

Procedimiento estandar de ensayo para la relación densidad-humedad de suelos usando un mazo de 2,5 kg y una caida de 305 mm

IT-GC-08 (AASHTO T 193) (*)

Método estándar de ensayo para determinar el índice de soporte de California (CBR).

- (*) Ensayo acreditado. Ver alcance en www.eca.or.cr.
- (**) Ensayo no acreditado.

3. Información de las muestras o especímenes de ensayo:

No. de identificación:

Descripción:

0341-17

1 Saco con material subrasante de aproximadamente 45 kg. Identificados por el cliente como: Cóbano, sondeo N°3, procedente de: camino San Isidro, Cóbano. Suelo arcilloso, color grisaceo, combinado de vetas blancas.

LanammeUCR

Laboratorio Nacional de Materiales y Medelos Estructurales Página I dej&C.R.

0342-17

3 Sacos con material de grava de aproximadamente 90 kg.

Identificados por el cliente como: Cóbano, Tajo Delicias.

Aportadas por:

Ing. Alonso Ulate.

Fecha de recepción:

2017/02/28

Fecha de realización del ensayo:

2017/03/08-2017/03/21

4. Información del muestreo:

Fecha de muestreo:

2017/02/23

Ubicación del muestreo:

Puntareneas, Cóbano.

Procedimiento de muestreo:

Muestreo de agregado realizado por la Unidad de Gestión Municipal de acuerdo a la norma ASTM D-75. Personal responsable de las muestras: Ing. Alonso Ulate.

Condiciones ambientales:

No aplica pues en el laboratorio los especímenes se acondicionan.

5. Resultados:

Tabla 1. Límite líquido, límite plástico e índice de plasticidad de un suelo, muestras indicadas.

MUESTRA	LÍMITE LÍQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD	
0341-17	55	31	24	
0342-17	49	34	15	

Nota:

Las muestras fueron acondicionadas por el método de preparación seco.

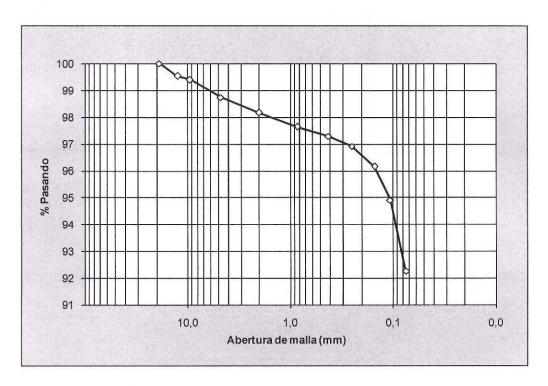
Procedimiento por el cual fue determinado el límite líquido, es por el método A, método multipunto.

Tabla 2. Gravedad específica del suelo, muestra 0341-17.

MÉTODO	G _T	G _S
В	2,732	2,730

Tabla 3. Análisis granulométrico de suelos vía seca, muestra: 0341-17.

MASA INICIAL:	1673	g	MASA FINAL:	130	g
MALLA No.	ABERTURA (mm)	MASA RET.	% RET.	% RET AC.	% PAS.
3/4"	19,0	0,00	0,0	0,0	100
1/2"	12,5	7,73	0,5	0,5	100
3/8"	9,50	2,27	0,1	0,6	99
Nº 4	4,75	11,2	0,7	1,3	99
Nº 10	2,00	9,55	0,6	1,8	98
Nº 20	0,85	8,72	0,5	2,4	98
Nº 40	0,43	5,85	0,3	2,7	97
Nº60	0,25	6,35	0,4	3,1	97
Nº100	0,15	12,9	0,8	3,9	96
Nº140	0,11	20,8	1,2	5,1	95
Nº200	0,08	44,2	2,6	7,7	92



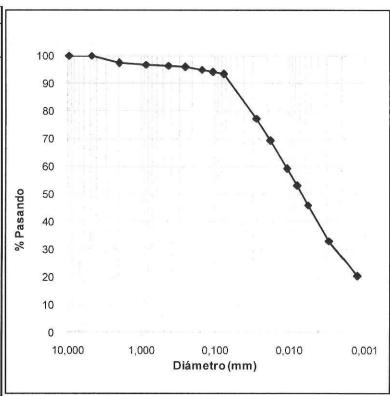

Gráfico 1. Curva granulométrica, muestra: 0341-17.

Tabla 4. Análisis granulométrico de suelos vía húmeda, muestra: 0341-17.

Tamiz	% Más Finos	Diámetro
No.		(mm)
3/8"	100	9,500
Nº 4	100	4,750
№ 10	97,3	2,000
№ 20	96,8	0,850
Nº 40	96,4	0,425
Nº60	95,8	0,250
Nº 100	94,9	0,150
Nº140	94,2	0,106
Nº200	93,4	0,075
	77,4	0,027
	69,3	0,018
	59,2	0,011
	53,2	0,008
	46,1	0,006
	33,2	0,003
	20,5	0,001
	lispersión:	18h

Nota:

El ensayo del hidrómetro es realizado para todas las muestras con material pasando el tamiz N

o 10.

Tabla 5. Resultados próctor estándar, muestra: 0341-17.

RESULTADOS					
Ensayo	Próctor Estándar				
Método	С				
Contenido de agua óptimo	22,6%				
Densidad seca máxima estándar	1544 kg/m³				
Forma de la superficie	Circular				

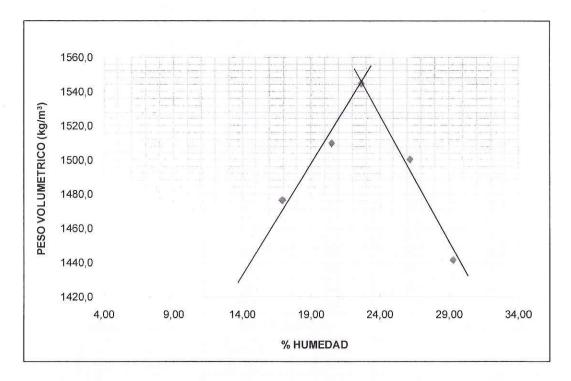


Gráfico 2. Peso volumétrico contra humedad, muestra: 0341-17.

Tabla 6. Resultados de CBR, muestra: 0341-17.

		SIMBOLOGÍA		
δs	Densidad seca			
С	Porcentaje de co	ompactación		
W	Porcentaje de hi	umedad en cada e	espécimen	
*	No se tomaron k	ecturas de deforn	nación	
GOLPES	MOLDE	δs	С] w
		(kg/m³)	(%)	(%)
56	57	1506,8	97,6	22,3
25	59	1414,7	91,6	22,4
10	60	1229,7	79,6	23,1
MOLDE		% EXP	ANSIÓN	
	24 horas	48 horas	72 horas	96 horas
57	*	*	4,92	4,95
59	*	*	4,09	4,04
60	*	*	2,70	2,75
PENETRA CIÓN	ESFUERZO	1		
		MOLDES		
				⊣

PENETRA CIÓN	ESFUERZO UNITARIO DE COMPACTACIÓN MOLDES						
	57	59	60				
(mm)	(kPa)	(kPa)	(kPa)				
0,000	0	0	0				
0,64	28	39	27				
1,27	46,5	49	40				
1,91	98	61	49				
2,54	157	101	58				
3,18	210	143	67				
3,81	256	175	73				
5,08	325	231	86				
7,62	404	284	100				
10,2	461	332	107				
12,7	518	380	117				

No. GOLPES	С	% CBR CA	ALCULADO	% CBR CORREGIDO		
	(%)	0,1 pulg	0,2 pulg	0,1 pulg	0,2 pulg	
		2,54 mm	5,08 mm	2,54 mm	5,08 mm	
56	97,6	2,3	3,2	3,1	3,4	
25	91,6	1,5	2,2	3,1	2,5	
10	79,6	0,8	0,8	0,8	0,8	

Nota:

- (*) No se registran valores pues son lecturas de fin de semana.

- Los valores de CBR para la curva de 56 y 25 golpes fueron corregidos por curvatura según norma.

LanammeUCR
Laboratorio Nacional de
Materiales y Modelos Estructurales
U.C.R.

Pagina 6 de 8

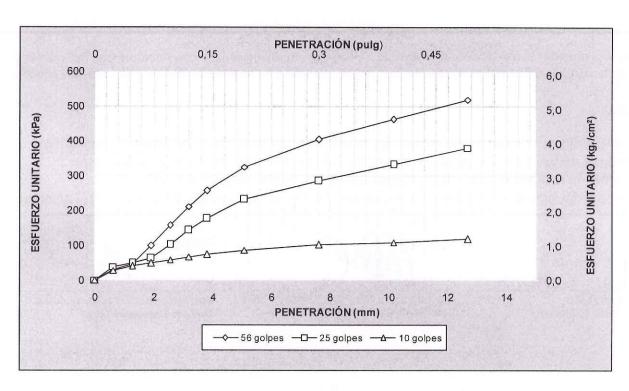


Gráfico 3. Esfuerzo unitario contra penetración, muestra: 0341-17.

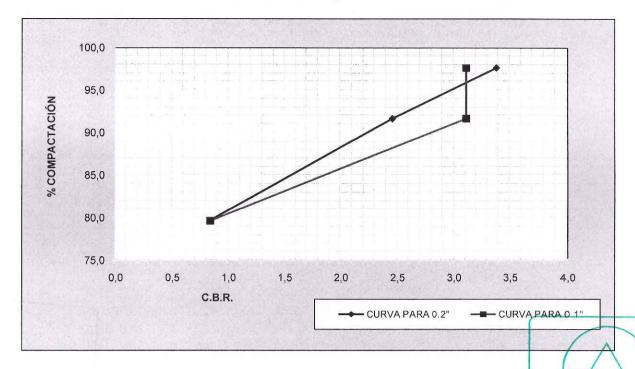


Gráfico 4. Porcentaje de compactación contra CBR, muestra: 0341-17.

Lanamme UCR
Laboratorio Nacional de
Materiales y Modelos Estructurales
Página 714.03R.

Nota:

Se recomienda la repetición del ensayo de CBR, según lo establece la norma debido a que los valores de CBR para la curvade 0,2" (5,08 mm) son mayores que los valores para la curva de de 0,1" (2,54 mm) de penetración.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

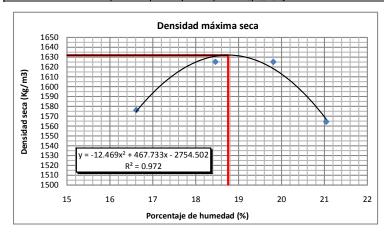
Preparó:

Ing. Oscar Valerio Salas Jefe Laboratorio de Geotecnia Revisó:

Ing. Luis Carlos Meseguer Quesada, MBA Coordinador de Laboratorios de Infraestructura Civil Aprobó:

Ing. Alejandro Navas Carro, M.Sc.

Director LanammeUCR



Estabilización con cemento hidráulico

Relación densidad-humedad (AASHTO T180)

DENS	DENSIDAD MAXIMA SECA					PORCENTAJE DE HUMEDAD					
Ensayo No.	1	2	3	4	5	Identificación de bandeja	1	2	3	4	5
Masa de muestra seca	2500	2500	2500	2500							
Porcentaje agua adicionado (%)	17.0%	19.0%	21.0%	23.0%	0.0%	Porcentaje agua adicionado (%)	17.0%	19.0%	21.0%	23.0%	0.0%
Masa de agua adicionada (g)	425	475	525	575	0						
Masa húmeda + molde (g)	5917.0	5999.4	6019.9	5969.4	0.0	Masa húmedad + bandeja (g)	715.6	736.3	817.2	780.0	
Masa del molde, (g)	4180.5	4180.5	4180.5	4180.5	4180.5	Masa seca + bandeja (g)	630.9	640.4	702.1	665.6	
Masa húmeda, (g)	1736.5	1818.9	1839.4	1788.9	-4180.5	Masa bandeja (g)	121.1	120.9	121.0	121.9	121.4
Volumen del molde, (cm ³)	944.736	944.736	944.736	944.736	945.736	Masa de agua (g)	84.7	95.9	115.1	114.4	0.0
Densidad húmeda, (Kg/m3)	1838	1925	1947	1894	-4420	Masa de seca (g)	509.8	519.5	581.1	543.7	-121.4
Densidad seca, (Kg/m ³)	1576	1625	1625	1564	-4420	Porcentaje de humedad (%)	16.6	18.5	19.8	21.0	0.0

 Densidad máxima seca:
 1632
 Kg/m³

 Porcentaje óptimo humedad:
 18.8
 %

 Densidad humeda:
 1938
 Kg/m³

 METODOLOGIA
 "C"
 "C"

 No. Capas
 5
 No. Golpes/ capa
 25

 Molde
 4"
 4"

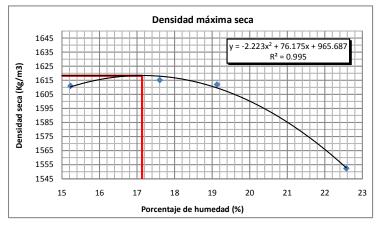
Porcentaje de compactación (ASTMD 558)

Densidad seca Próctor (kg/m³)	1632
Humedad óptima (%)	18.8
1711123	CALLIVE CO.

Especímen	1	2	3	4	5	6
Masa del molde (g)	4180.4	4180.4	4180.4	4180.4	4180.4	4180.4
Masa molde + suelo húmedo (g)	5986.6	5980.3	5981.4	5983.2	5987.3	5996.4
Masa de suelo humedo (g)	1806.2	1799.9	1801.0	1802.8	1806.9	1816.0
Volumen del molde (cm3)	944.0	944.0	944.0	944.0	944.0	944.0
Densidad seca real (kg/m ³)	1638	1631	1619	1637	1625	1632
Humedad especímen (%)	16.9	17.0	17.9	16.7	17.9	18.0
Porcentaje de compactación (%)	100.4	99.9	99.2	100.3	99.6	100.0

	70.	76.77 2.3 7.5 76.5 8	T. S. S. Leville	/ _///	N. ART 1 II - 2	
Cápsula #	16	19	29	32	35	38
Peso de capsula (g)	120.9	121.7	120.7	121	120.4	121.8
Peso cápsula + muestra húmeda (g)	808	768.7	659.4	707.6	697.5	647.3
Peso cápsula + muestra seca (g)	708.8	674.8	577.6	623.5	609.9	567.3
Humedad de muestra (%)	16.9	17.0	17.9	16.7	17.9	18.0

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017


Resistencia compresión inconfinada (ASTM D-1633)

No. ESPECIME N	% cemento	DIÁMETRO (mm)	ALTURA (mm)	ÁREA TRANSVERSA L (cm²)	L/D	CARGA MÁXIMA (kN)	ESFUERZO MÁXIMO (kPa)	ESFUERZO MÁXIMO (kgf/cm²)	EDAD DE FALLA (días)		
1	2.5	102	117	80.9	1.15	11.0	1359	14	7		
2	2.5	102	118	81.3	1.16	6.9	849	9	7		
3	3	102	117	81.4	1.15	10.9	1339	14	7		
4	3	102	117	81.4	1.15	14.0	1721	18	7		
5	3.5	102	117	81.3	1.15	15.1	1857	19	7		
6	3.5	102	117	81.5	1.15	15.4	1890	19	7		
'						PROMEDIO	1502	15			
		Ž				DES.EST	365	3.72			

Estabilización con cal hidratada

Relación densidad-humedad (AASHTO T180)

	2011 2					The second secon	70, 70		Th. 77. 1942			
DEN:	DENSIDAD MAXIMA SECA						PORCENTAJE DE HUMEDAD					
Ensayo No.	1	1 2 3 4 5 Identificación de bandeja 1 2					3	4	5			
Masa de muestra seca	2500	2500	2500	2500								
Porcentaje agua adicionado (%)	17.0%	19.0%	21.0%	23.0%	0.0%	Porcentaje agua adicionado (%)	17.0%	19.0%	21.0%	23.0%	0.0%	
Masa de agua adicionada (g)	425	475	525	575	0							
Masa húmeda + molde (g)	5909.1	5949.8	5969.5	5952.9	0.0	Masa húmedad + bandeja (g)	685.5	707.7	693.7	694.3		
Masa del molde, (g)	4158.6	4158.6	4158.6	4158.6	4158.6	Masa seca + bandeja (g)	610.8	619.9	601.9	588.8		
Masa húmeda, (g)	1750.5	1791.2	1810.9	1794.3	-4158.6	Masa bandeja (g)	120.2	121.1	122.0	121.4	121.4	
Volumen del molde, (cm3)	943.000	943.000	943.000	943.000	943.000	Masa de agua (g)	74.7	87.8	91.8	105.5	0.0	
Densidad húmeda, (Kg/m³)	1856	1899	1920	1903	-4410	Masa de seca (g)	490.6	498.8	479.9	467.4	-121.4	
Densidad seca, (Kg/m3)	1611	1615	1612	1552	-4410	Porcentaje de humedad (%)	15.2	17.6	19.1	22.6	0.0	

Densidad máxima seca: Porcentaje óptimo humedad: Densidad humeda: METODOLOGIA	1618 17.1 1896 "C"	Kg/m ³ % Kg/m ³
No.Capas	5	
No.Golpes/ capa	25	
Molde	4"	

TOA MUST

Informe LM-PI-GM-INF-06-2017 Fecha de emisión: Setiembre de 2017

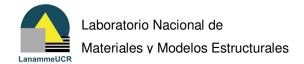
Porcentaje de compactación (ASTMD 558)

Densidad seca Próctor (kg/m³)	1618
Humedad óptima (%)	17.1

Especímen	1	2	3	4	5	6
Masa del molde (g)	4158.3	4158.3	4158.3	4158.3	4158.3	4158.3
Masa molde + suelo húmedo (g)	5990.5	5990.1	5972.5	5968.3	5965.6	5972.8
Masa de suelo humedo (g)	1832.2	1831.8	1814.2	1810.0	1807.3	1814.5
Volumen del molde (cm3)	941.7	941.7	941.7	941.7	941.7	941.7
Densidad seca real (kg/m ³)	1605	1621	1606	1587	1598	1613
Humedad especímen (%)	21.0	19.8	19.8	20.9	19.9	19.3
Porcentaje de compactación (%)	99.2	100.2	99.2	98.1	98.7	99.7

Cápsula #	3	7	15	21	30	43
Peso de capsula (g)	120.1	119.5	120.3	120.6	121.4	121.5
Peso cápsula + muestra húmeda (g)	668.6	705.8	741.8	709.7	663.3	808.1
Peso cápsula + muestra seca (g)	573.5	608.9	639.2	607.9	573.3	697.2
Humedad de muestra (%)	21.0	19.8	19.8	20.9	19.9	19.3

Resistencia compresión inconfinada (ASTM D-1633)


			Z ZIIV*	700	VAL A L 12/21					
ı	No. ESPECIME N	% cal	DIÁMETRO (mm)	ALTURA (mm)	ÁREA TRANSVERSA L (cm²)	L/D	CARGA MÁXIMA (kN)	ESFUERZO MÁXIMO (kPa)	ESFUERZO MÁXIMO (kgf/cm²)	EDAD DE FALLA (días) capilaridad
	1	0.8	102	117	81.3	1.15	3.3	406	4	1
	2	0.8	102	117	81.2	1.15	3.5	431	4	1
	3	1.8	102	117	81.2	1.15	9.4	1158	12	1
Г	4	1.8	102	117	81.2	1.16	9.1	1121	11	1
Г	5	2.8	102	117	81.2	1.15	15.6	1922	20	1
	6	2.8	102	117	81.1	1.15	19.5	2404	25	1

 PROMEDIO
 1240
 13

 DES.EST
 729
 7.44

Informe LM-PI-GM-INF-06-2017

Fecha de emisión: Setiembre de 2017

Fotografías de sitios de conteos vehiculares

Conteo 1 Camino San Isidrio C6-01-037 01/11/2016-02/11/2016 Puntarenas Cóbano

Descipcion:
Proyecto:
Fecha:
Canton:
Distrito:

Ubicación GPS	GRADOS	MINUTOS	SEGUNDOS	ı
N	9°	38'	55.5"	l
W	85°	8'	12.7"	ı

Distrito:	Cóbano									
	Clase 1	Clase 2	Clase 3	Clase 4	Clase 5	Clase 6	Clase 7	Clase 8	Clase 9	
Hora	Motocicletas	Livianos, pick up	Carga liviana y otros	Buses	Camión 2 ejes	Camión 3 ejes	Camión 4 ejes	Articulado 3-4 ejes	Articulado 5 ejes	Total
	motodiolotao		2 ejes	2000	C2+, C2	C3	C4	T2-S1, T2-S2, T3- S1	T3-S2	
12:00:00 a.m.	3	2	0	0	0	0	0	0	0	5
01:00:00 a.m.	0	3	0	0	0	0	0	0	0	3
02:00:00 a.m.	0	1	0	0	1	0	0	0	0	2
03:00:00 a.m.	1	5	2	0	1	1	0	0	0	10
04:00:00 a.m.	1	3	0	0	0	0	0	0	0	4
05:00:00 a.m.	24	2	0	0	0	0	0	0	0	26
06:00:00 a.m.	103	36	3	1	4	0	0	0	0	147
07:00:00 a.m.	56	58	6	0	3	0	0	0	1	124
08:00:00 a.m.	28	60	4	0	2	3	0	0	0	97
09:00:00 a.m.	24	76	9	1	3	0	0	1	0	114
10:00:00 a.m.	42	63	6	0	6	0	0	2	0	119
11:00:00 a.m.	29	71	5	0	3	0	0	1	0	109
12:00:00 p.m.		60	6	1	4	0	0	0	2	121
01:00:00 p.m.	41	62	8	0	1	1	1	4	0	118
02:00:00 p.m.	62	65	9	0	2	2	0	0	0	140
03:00:00 p.m.	58	70	6	0	2	0	0	1	0	137
04:00:00 p.m.	54	83	8	1	2	0	0	2	0	150
05:00:00 p.m.	106	77	7	0	2	0	0	1	1	194
06:00:00 p.m.	39	34	4	0	4	1	0	0	0	82
07:00:00 p.m.	20	29	0	0	0	0	0	0	0	49
08:00:00 p.m.	13	14	1	0	2	0	0	0	0	30
09:00:00 p.m.	7	8	0	0	1	0	0	0	0	16
10:00:00 p.m.	16	12	0	0	0	0	0	0	0	28
11:00:00 p.m.		5	0	0	0	0	0	0	0	9
Total	779	899	84	4	43	8	1	12	4	1834
Porcentaje	42.5%	49.0%	4.6%	0.2%	2.3%	0.4%	0.1%	0.7%	0.2%	100%

Conteo 2 Camino Santa Teresa C6-01-001-Malpaís 01/11/2016-02/11/2016 Puntarenas Cóbano

Descipcion:
Proyecto:
Fecha:
Canton:
Distrito:

Ubicación GPS	GRADOS	MINUTOS	SEGUNDOS
Ν	9°	37'	23.7"
W	85°	8'	47.3"

Distrito:	Cobano									
	Clase 1	Clase 2	Clase 3	Clase 4	Clase 5	Clase 6	Clase 7	Clase 8	Clase 9	
Hora	Motocicletas	Livianos, pick up	Carga liviana y otros 2 ejes	Buses	Camión 2 ejes	Camión 3 ejes	Camión 4 ejes	Articulado 3-4 ejes	Articulado 5 ejes	Total
			otros 2 ejes		C2+, C2	C3	C4	T2-S1, T2-S2, T3-S1	T3-S2	
12:00:00 a.m.	1	0	0	0	0	0	0	0	0	1
01:00:00 a.m.	1	1	0	0	0	0	0	0	0	2
02:00:00 a.m.	1	0	0	0	0	0	0	0	0	1
03:00:00 a.m.	0	3	0	0	0	0	0	0	0	3
04:00:00 a.m.	1	2	0	0	0	0	0	0	0	3
05:00:00 a.m.	4	2	0	0	0	0	0	0	0	6
06:00:00 a.m.	43	17	1	0	3	0	0	0	0	64
07:00:00 a.m.	57	33	4	0	1	0	0	0	0	95
08:00:00 a.m.	54	57	5	0	1	0	0	1	0	118
09:00:00 a.m.	41	40	1	0	2	0	0	0	0	84
10:00:00 a.m.	50	44	3		0	0	0	0	0	98
11:00:00 a.m.	28	50	3	1	1	0	0	0	0	83
12:00:00 p.m.	56	55	1	0	0	0	0	0	0	112
01:00:00 p.m.	56	60	3	0	1	0	0	0	0	120
02:00:00 p.m.	66	59	6	0	1	0	0	0	0	132
03:00:00 p.m.	47	48	5	0	1	0	0	0	0	101
04:00:00 p.m.	45	54	2	0	1	0	0	0	0	102
05:00:00 p.m.	44	54	0	0	0	1	1	0	0	100
06:00:00 p.m.	34	35	1	0	2	1	0	1	0	74
07:00:00 p.m.	23	21	0	0	0	0	0	0	0	44
08:00:00 p.m.	19	19	0	0	0	0	0	0	0	38
09:00:00 p.m.	19	17	0	0	0	0	0	0	0	36
10:00:00 p.m.	4	9	0	0	0	0	0	0	0	13
11:00:00 p.m.	2	4	0	0	0	0	0	0	0	6
Total	696	684	35	2	14	2	1	2	0	1436
Porcentaje	48.5%	47.6%	2.4%	0.1%	1.0%	0.1%	0.1%	0.1%	0.0%	100%

Unidad de gestión municipal

Descipcion: Conteo 3

Proyecto: Camino Santa Teresa C6-01-001

Fecha Conteo: 31-10-2016 / 02-11-2016

Canton: Puntarenas Distrito: Cóbano

Ubicación GPS	GRADOS	MINUTOS	SEGUNDOS	
N	9°	38'	40.2"	
W	85°	10'	4 4"	

Hora	Clase 1 Clase 2 Clase 3 Clase 4 Clase 5					
	Bicicletas-Motos	Livianos- PickUp	Camion C2+, C2	Camion C3,C4,BUS	Camion T3-S2 y Mayores	Total
11/01/16	0	0	0	0	0	0
01:00	0	0	0	0	0	0
02:00	1	2	1	0	1	5
03:00	0	2	0	0	0	2
04:00	0	2	0	0	0	2
05:00	10	8	0	0	0	18
06:00	54	48	8	0	0	110
07:00	50	73	8	1	1	133
08:00	31	66	7	1	1	106
09:00	28	84	11	3	0	126
10:00	23	72	16	1	0	112
11:00	26	75	7	1	1	110
12 p.m.	38	86	2	1	3	130
13:00	27	73	7	2	0	109
14:00	39	81	8	2	0	130
15:00	19	82	11	2	1	115
16:00	22	68	13	2	2	107
17:00	39	67	7	2	1	116
18:00	22	62	5	2	0	91
19:00	16	44	3	0	0	63
20:00	15	34	0	2	1	52
21:00	6	31	1	0	1	39
22:00	11	18	1	1	0	31
23:00	1	3	0	0	1	5
Total	478	1081	116	23	14	1712
Porcentaje	27.9%	63.1%	6.8%	1.3%	0.8%	100.0%

Descipcion: Conteo 4

Proyecto: Camino Delicias C6-01-038 Fecha Conteo: 31-10-2016 / 02-11-2016

Canton: Puntarenas
Distrito: Cóbano

Ubicación GPS	GRADOS	MINUTOS	SEGUNDOS
N	9°	39'	2.6"
W	85°	5'	39.8"

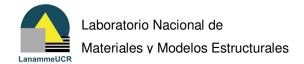
Distrito: Cobano							
Hora	Clase 1	Clase 2	Clase 3	Clase 4	Clase 5	Total	
	Bicicletas-Motos	Livianos- PickUp	Camion C2+, C2	Camion C3,C4,BUS	Camion T3-S2 y Mayores		
11/01/16	3	4	0	0	0	7	
01:00	0	1	0	0	0	1	
02:00	1	1	0	0	0	2	
03:00	0	0	0	0	0	0	
04:00	0	5	1	0	0	6	
05:00	1	4	1	0	0	6	
06:00	10	28	7	0	0	45	
07:00	16	28	12	0	0	56	
08:00	13	29	6	0	0	48	
09:00	3	13	5	0	0	21	
10:00	17	27	6	0	0	50	
11:00	6	22	12	0	0	40	
12 p.m.	7	38	6	0	0	51	
13:00	6	34	5	0	0	45	
14:00	8	28	4	0	0	40	
15:00	9	33	2	0	0	44	
16:00	10	44	6	0	0	60	
17:00	19	31	3	0	0	53	
18:00	4	24	2	0	0	30	
19:00	3	15	0	0	0	18	
20:00	7	17	3	0	0	27	
21:00	0	10	0	0	0	10	
22:00	1	9	0	0	0	10	
23:00	0	4	0	0	0	4	
Total	144	449	81	0	0	674	
Porcentaje	21.4%	66.6%	12.0%	0.0%	0.0%	100.0%	

Unidad de Gestion Municipal- LanammeUCR

gestión municipal

Descipcion:

Conteo 5

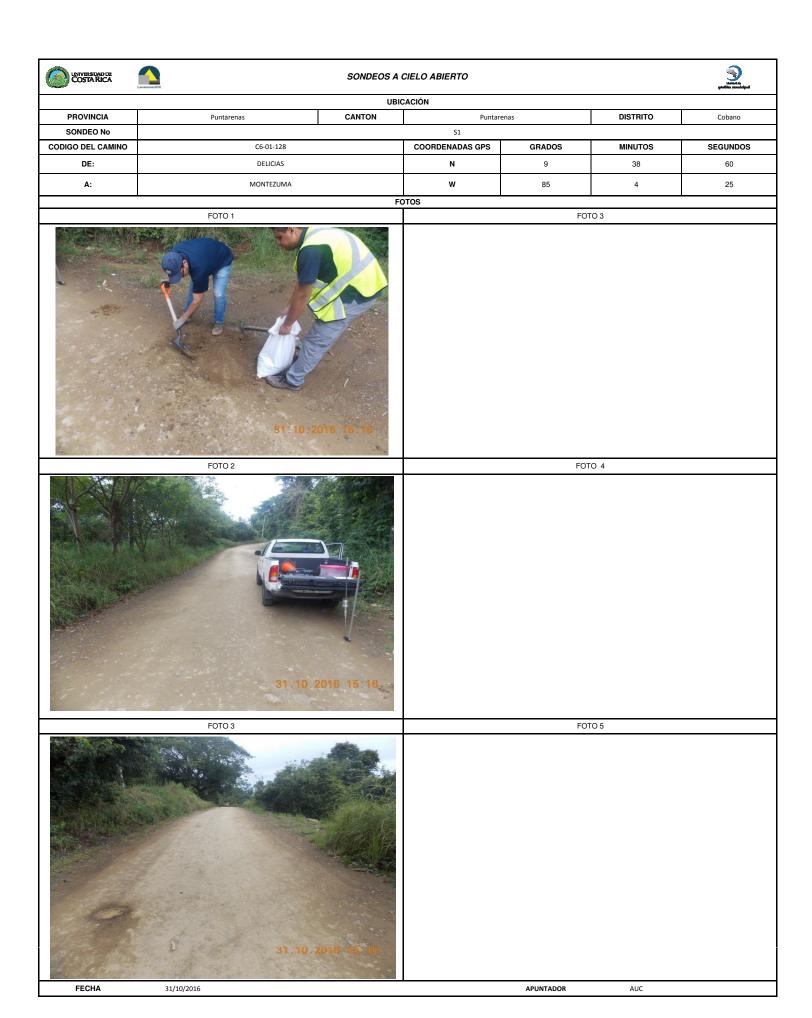

Proyecto: Camino Montezuma C6-01-128

Fecha Conteo: 31-10-2016 / 02-11-2016

Canton: **Puntarenas** Distrito: Cóbano

Ubicación GPS	GRADOS	MINUTOS	SEGUNDOS
Obicación di 3	GILADOS	MINOTOS	SECONDOS
N	9°	38'	58.4"
W	85°	4'	28.1"

Distrito.	Clase 1	Clase 2	Clase 3	Clase 4	Clase 5	
Hora	Bicicletas-Motos	Livianos- PickUp	Camion C2+, C2	Camion C3,C4,BUS	Camion T3-S2 y Mayores	Total
11/01/16	0	0	0	0	0	0
01:00	0	1	0	0	0	1
02:00	0	0	0	0	0	0
03:00	0	0	0	0	0	0
04:00	0	1	0	0	0	1
05:00	0	0	0	0	0	0
06:00	0	3	0	0	0	3
07:00	3	6	0	0	0	9
08:00	5	11	0	0	0	16
09:00	8	8	0	0	0	16
10:00	11	5	2	0	0	18
11:00	9	27	0	0	0	36
12 p.m.	7	13	1	0	0	21
13:00	9	14	1	0	0	24
14:00	7	14	0	0	0	21
15:00	9	13	0	0	0	22
16:00	9	17	1	0	0	27
17:00	4	8	0	0	0	12
18:00	9	16	1	0	0	26
19:00	1	8	0	0	0	9
20:00	2	9	0	0	0	11
21:00	2	1	0	0	0	3
22:00	1	0	0	0	0	1
23:00	1	1	0	0	0	2
Total	97	176	6	0	0	279
Porcentaje	34.8%	63.1%	2.2%	0.0%	0.0%	100.0%



COSTARICA	LanammeUCR	SONDEUS A CIELO ABIERTO					
1. UBICAC	IÓN	2. DIMENSIONES (GENERALES	MACA LITUIZADA	6. CBR		
PROVINCIA	Puntarenas	LONGITUD (Km):	0.5	MASA UTILIZADA (kg)		8	
CANTON	Puntarenas	ANCHO PROM SR (m):	5.5	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m):	13-14	0	35		
CODIGO DEL CAMINO		C6-01-128		5	90		
DE:		DELICIAS		5	145		
A:		MONTEZUMA		5	245		
	3. SONE	DEOS		5	340		
SONDEO No 51			5	390			
ESTACIONAMIENTO	ENTO -			5	416		
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	5	451		
N	9	38	59.5	5	480		
w	85	4	25.3	5	498		
	4. ESTRUCTURA DE PAVIMENTO			5	520		
CAPAS	DENOMINACION	ACION ESPESOR (cm)		5	537		
No. 1	CGR	10-15		5	553		
No. 2	SR	-		5	573		
No. 3		-		5	590		
No. 4		-		5	607		
No. 5		-		5	620		
No. 6		-		5	633		
CAPAS		DESCRIPCIÓN		5	645		
No. 1	Capa granular o	de rodadura sombinada con	suelo arcilloso	5	661		
No. 2	Se observa aflor	ación de manto rocoso a po	ca profundidad	5	675		
No. 3				5	696		
No. 4				5	716		
No. 5				5	741		
No. 6				5	762		
	5. LECTURAS DEL A	NILLO DE CARGA		5	791		
1		11		5	805		
2		12		5	816		
3		13		5	824		
4		14		5	836		
5		15					
6		16					
7		17					
8		18					
9		19					
10		20					
_	<u>I</u>	7 CONDICIONES	DEL CITIO V OPCI	ERVACIONES GENERA	NI ES	<u> </u>	I

FECHA 31/10/2016 APUNTADOR AUC

COSIARCA	COSTANCA EMPLOY ASILES A SILES ASILES									
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES		6. CBF	(DCP)				
PROVINCIA	Puntarenas	LONGITUD (Km):	2.5km	MASA UTILIZADA (kg)		8				
CANTON	Puntarenas	ANCHO PROM SR (m):	5-5,5	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)			
DISTRITO	Cobano	ANCHO PROM DV (m):	13-14	0	35					
CODIGO DEL CAMINO		C6-01-038		5	182					
DE:		Escuela Delicias		3	270					
A:		Plaza Futbol-Delicias		3	327					
	3. SONDEOS			2	355					
SONDEO No S 2			1	370						
ESTACIONAMIENTO		-		1	385					
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	1	408					
N	9	39	03.6	1	430					
w	85	5	39.1	1	455					
	4. ESTRUCTURA D	DE PAVIMENTO		1	477					
CAPAS	DENOMINACION	ESPESOR (cm)		1	506					
No. 1	Capa de rodadura	20-25		1	526					
No. 2	Suelo	-		1	545					
No. 3	-	-		1	560					
No. 4	-	-		1	575					
No. 5	-	-		1	592					
No. 6	-	-		1	609					
CAPAS		DESCRIPCIÓN		1	626					
No. 1	Suelo arcilloso d	color rojizo con muy poco ma	aterial granular	1	648					
No. 2		Suelo arcilloso color rojizo		1	672					
No. 3		-		1	699					
No. 4		-		1	730					
No. 5		-		1	756					
No. 6		-		1	780					
	5. LECTURAS DEL A	NILLO DE CARGA		1	816					
1		11		1	853					
2		12								
3		13								
4		14								
5		15								
6		16								
7		17								
8		18								
9		19								
10		20								
		7. CONDICIONES	DEL SITIO Y OBSI	ERVACIONES GENERA	ALES					

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

Se toma muestra 2 bolsas rasante existente

FECHA 31/10/2016 APUNTADOR AUC

APUNTADOR

AUC

FECHA

31/10/2016

Cosimilari	LanammeUCR						gerilijn minskipal
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES		6. CBR	(DCP)	
PROVINCIA	Puntarenas	LONGITUD (Km):	11	MASA UTILIZADA (kg)		8	
CANTON	Puntarenas	ANCHO PROM SR (m):	5-6	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m):	14	0	41	3	619
CODIGO DEL CAMINO		C6-01-001		5	97	3	647
DE:		MALPAÍS		5	115	3	677
A:		PLAYA HERMOSA		5	136	2	696
	3. SOND	EOS		5	161	2	718
SONDEO No S 3			5	187	1	727	
ESTACIONAMIENTO	TRAMO 1 LADO DERECHO (0+500)			5	212	1	736
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	5	233	1	746
N	9	36	18.8	5	256	1	754
w	85	8	28.3	5	280	1	762
	4. ESTRUCTURA DE PAVIMENTO			5	304	1	771
CAPAS	DENOMINACION	CION ESPESOR (cm)		5	320	1	780
No. 1	CGR	20-25		5	331	1	791
No. 2	SR	-		5	340	1	802
No. 3		-		5	349	1	817
No. 4		-		5	359	1	832
No. 5		-		5	367	1	853
No. 6		-		5	372	1	874
CAPAS		DESCRIPCIÓN		5	379	1	895
No. 1		adura contaminada con sue edad, huecos yd eformacior		5	387	1	916
No. 2		-		5	394		
No. 3				5	401		
No. 4				5	409		
No. 5				5	417		
No. 6				5	425		
	5. LECTURAS DEL A	NILLO DE CARGA		5	434		
1		11		5	442		
2		12		5	451		
3		13		5	471		
4		14		5	495		
5		15		5	510		
6		16		5	526		
7		17		3	539		
8		18		3	553		
9		19		3	570		
10		20		3	593		
		7 CONDICIONES	DEL SITIO V ORSE	RVACIONES GENERA	N FS		

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

AUC

Condiciones muy humedas, cunetas llenas de agua / No se toma muestra

FECHA 01/11/2016 APUNTADOR

	UBICACIÓN								
PROVINCIA	Puntarenas	Puntar	enas	DISTRITO	Cobano				
SONDEO No	\$3								
CODIGO DEL CAMINO	C6-01-001	COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS				
DE:	MALPAÍS		N	9	36	19			
A:	PLAYA HERMOSA		w	85	8	28			

FOTOS

FOTO 2 FOTO 4

FOTO 3 FOTO 5

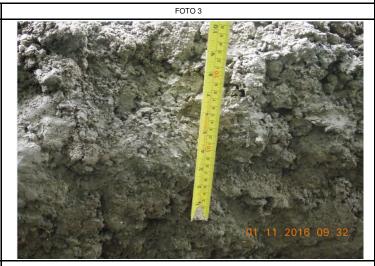
 FECHA
 31/10/2016
 APUNTADOR
 AUC

Cosimilaci	Balletin Samuel								
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES		6. CBR	(DCP)			
PROVINCIA	Puntarenas	LONGITUD (Km):	11	MASA UTILIZADA (kg)		8			
CANTON	Puntarenas	ANCHO PROM SR (m):	5-6	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)		
DISTRITO	Cobano	ANCHO PROM DV (m):	14	0	50	2	904		
CODIGO DEL CAMINO		C6-01-001		5	96	1	912		
DE:		MALPAÍS		5	154				
A:		PLAYA HERMOSA		5	218				
3. SONDEOS			3	245					
SONDEO No S 4			3	264					
ESTACIONAMIENTO	TRAM	10 2 LADO IZQUIERDO (1+	400)	3	282				
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	3	304				
N	9	36	48.6	3	324				
w	85	8	35.9	3	352				
	4. ESTRUCTURA DE PAVIMENTO		3	380					
CAPAS	DENOMINACION	N ESPESOR (cm)		3	411				
No. 1	CGR	0-20		3	439				
No. 2	RE	20-80		3	470				
No. 3	SR	-		3	491				
No. 4				3	514				
No. 5				3	542				
No. 6				3	569				
CAPAS		DESCRIPCIÓN		3	597				
No. 1				3	621				
No. 2				3	634				
No. 3				3	651				
No. 4				3	677				
No. 5				3	699				
No. 6				3	721				
	5. LECTURAS DEL A	NILLO DE CARGA		2	737				
1		11		2	751				
2		12		2	765				
3		13		2	781				
4		14		2	796				
5		15		2	809				
6		16		2	824				
7		17		2	844				
8		18		2	864				
9		19		2	880				
10		20		2	892				
		7 CONDICIONES	DEL SITIO Y ORSE	RVACIONES GENERA	N ES				

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

Lado Izquierdo, condicion humeda, zona cunetas acumulacion de agua respecto al S 3. Se toman 2 bolsas (muestra rasante)

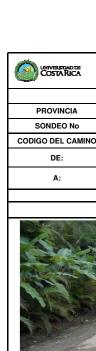
FECHA 01/11/2016 APUNTADOR AUC



UBICACIÓN									
PROVINCIA	Puntarenas	Puntarenas		DISTRITO	Cobano				
SONDEO No	\$4								
CODIGO DEL CAMINO	C6-01-001	COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS				
DE:	MALPAÍS		N	9	36	49			
A:	PLAYA HERMOSA	w	85	8	28				

FOTOS

FECHA APUNTADOR 01/11/2016 AUC



Cosimilaci	LanammeUCR						Refer to goallijn meninipal
1. UBICAC	ción	2. DIMENSIONES (GENERALES		6. CBR	(DCP)	
PROVINCIA	Puntarenas	LONGITUD (Km):	11	MASA UTILIZADA (kg)		8	
CANTON	Puntarenas	ANCHO PROM SR (m):	5-6	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m):	14	0	44		
CODIGO DEL CAMINO		C6-01-001		5	65		
DE:		MALPAÍS		5	79		
A:		PLAYA HERMOSA		5	89		
3. SONDEOS				5	100		
SONDEO No S 5			10	124			
ESTACIONAMIENTO	MIENTO TRAMO 3 LD (3+900)			10	156		
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	5	174		
N	9	37	55.4	5	197		
w	85	9	17.4	5	235		
	4. ESTRUCTURA DE PAVIMENTO		5	271			
CAPAS	DENOMINACION	ON ESPESOR (cm)		5	306		
No. 1	SA	0-10		5	350		
No. 2	BG	10-25		3	397		
No. 3	SR	-		3	437		
No. 4	-	-		3	469		
No. 5	-	-		2	487		
No. 6	-	-		2	503		
CAPAS		DESCRIPCIÓN		2	519		
No. 1	Sello asfáltic	o, material granular y emulsi	ón asfáltica	2	535		
No. 2	Capa de base	, material granular combinad	do con suelo	2	557		
No. 3		Suelo subrasante		2	586		
No. 4		-		2	621		
No. 5		-		1	646		
No. 6		-		1	675		
	5. LECTURAS DEL A	NILLO DE CARGA		1	707		
1		11		1	744		
2		12		1	786		
3		13		1	832		
4		14		1	874		
5		15		1	907		
6		16					
7		17					
8		18					
9		19					
10		20					
		7 CONDICIONES	DEL SITIO Y ORSE	RVACIONES GENERA	N ES		

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

Sondeo en tramo estabilizado con emulsion, cerca de puente aprox 50 m. Se toma muestra material granular existente 1 saco

FECHA 01/11/2016 APUNTADOR AUC

UBICACIÓN

PROVINCIA	Puntarenas	CANTON Puntarenas			DISTRITO	Cobano					
SONDEO No	\$5										
CODIGO DEL CAMINO	C6-01-001		COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS					
DE:	MALPAÍS	N	9	37	55						
A:	PLAYA HERMOSA		w	85	9	17					

FOTOS

FOTO 1 FOTO 3

FOTO 2 FOTO 4

FOTO 5

FECHA 01/11/2016

Cosimilari	LanammeUCR						Station de goellijn meminipal
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES		6. CBF	(DCP)	
PROVINCIA	Puntarenas	LONGITUD (Km):	11	MASA UTILIZADA (kg)		8	
CANTON	Puntarenas	ANCHO PROM SR (m):	5-6	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m):	14	0	52		
CODIGO DEL CAMINO		C6-01-001		5	110		
DE:		MALPAÍS		5	151		
A:		PLAYA HERMOSA		5	186		
3. SONDEOS			5	220			
SONDEO No S 6			10	258			
ESTACIONAMIENTO		TRAMO 3 LD (6+500)		10	294		
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	5	337		
N	9	38	54.8	5	386		
w	85	10	20.0	5	423		
	4. ESTRUCTURA DE PAVIMENTO			5	467		
CAPAS	DENOMINACION	ESPESOR (cm)		5	506		
No. 1	CGR CON MELAZA	25.0		5	530		
No. 2	RE1	25.0		3	544		
No. 3	RE2	25.0		3	559		
No. 4	SR	-		3	576		
No. 5				2	595		
No. 6				2	637		
CAPAS		DESCRIPCIÓN		2	680		
No. 1	Capa granular de	rodadura con melaza para	control de polvo	2	705		
No. 2	Rellleno de	e capa granular combinada d	con suelo	2	734		
No. 3	Rellleno de	e capa granular combinada d	con suelo	2	763		
No. 4		Suelo arenoso subrasante		2	793		
No. 5				1	821		
No. 6				1	851		
	5. LECTURAS DEL A	NILLO DE CARGA		1	883		
1		11					
2		12					
3		13					
4		14					
5		15					
6		16					
7		17					
8		18					
9		19					
10		20					
	•	7 CONDICIONES	DEL SITIO Y ORSE	RVACIONES GENERA	AI FS	-	•

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

AUC

Zona capa granular de rodadura con riego de melaza, zona humeda con cunetas, se toma una muestra (1 saco) rasante existente.

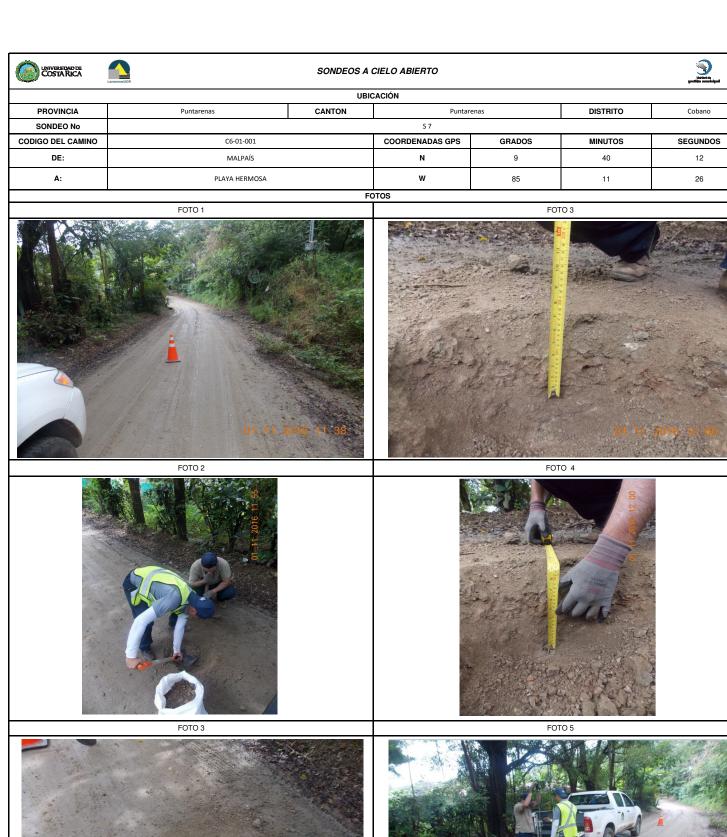
FECHA 01/11/2016 APUNTADOR

	UBICACIÓN									
PROVINCIA	Puntarenas	Puntarenas		DISTRITO	Cobano					
SONDEO No	\$6									
CODIGO DEL CAMINO	C6-01-001	COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS					
DE:	MALPAÍS		N	9	38	55				
A:	PLAYA HERMOSA		w	85	10	20				

FOTOS

FOTO 2 FOTO 4

FECHA 01/11/2016 APUNTADOR A


Cosimilari	LanammeUCR						Station on goodijn membaljaal
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES		6. CBF	(DCP)	
PROVINCIA	Puntarenas	LONGITUD (Km):	11	MASA UTILIZADA (kg)	UTILIZADA		
CANTON	Puntarenas	ANCHO PROM SR (m):	4.3	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m):	7.5	0	45		
CODIGO DEL CAMINO		C6-01-001		5	89		
DE:		MALPAÍS		5	122		
A:		PLAYA HERMOSA		5	146		
	3. SOND	EOS		5	168		
SONDEO No		S 7		5	189		
ESTACIONAMIENTO		TRAMO 4 LI (9+900)		5	221		
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	5	246		
N	9	40	12.4	6	272		
w	85	11	26.4	5	292		
	4. ESTRUCTURA D	DE PAVIMENTO		5	311		
CAPAS	DENOMINACION	ESPESOR	(cm)	5	330		
No. 1	CGR	0-10		5	348		
No. 2	RE	10-40		5	372		
No. 3	SR	>40		5	397		
No. 4	-	-		5	432		
No. 5	-	-		5	460		
No. 6	-	-		3	491		
CAPAS		DESCRIPCIÓN		3	529		
No. 1	Capra de n	naterial granular combinado	con suelo	3	562		
No. 2	Material	granular tipo "cascajo" colo	r rojizo	3	600		
No. 3	Relleno de mate	rial granular combinado cor	suelo arenoso	3	636		
No. 4		-		3	679		
No. 5		-		2	709		
No. 6		-		2	743		
	5. LECTURAS DEL A	NILLO DE CARGA		2	789		
1		11		2	815		
2		12		2	851		
3		13		1	871		
4		14		1	890		
5		15					
6		16					
7		17					
8		18					
9		19					
10		20					
		7 CONDICIONES	DEL SITIO Y OBSE	RVACIONES GENERA	AI FS		

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

AUC

Zona angosta sin cunetas, material contaminado con suelo, condicion muy humeda. 1 saco material de muestra.

FECHA 01/11/2016 APUNTADOR

01/11/2016

FECHA

COSIARCA	LanammeUCR		MD200 A GILLO				Rettel to gesiljn semisljesi
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES	6. CBR (DCP)			
PROVINCIA	Puntarenas	LONGITUD (Km): 3.5		MASA UTILIZADA (kg)	8		
CANTON	Puntarenas	ANCHO PROM SR (m): 5-6		No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m): 14		0	43		
CODIGO DEL CAMINO		C6-01-037		5	114		
DE:		COBANO		5	231		
A:		SAN-ISIDRIO		1	274		
	3. SOND	EOS		1	306		
SONDEO No		S 8-A		1	338		
ESTACIONAMIENTO	LADO	O DERECHO-EN SUPERFI	CIE	1	372		
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	1	399		
N	9	38	37.9	1	424		
w	85	8	12.2	1	450		
	4. ESTRUCTURA D	DE PAVIMENTO		1	476		
CAPAS	DENOMINACION	ESPESOR	(cm)	1	505		
No. 1	CGR	0-20		1	531		
No. 2	SR1	20-60		1	554		
No. 3	SR2	-		1	573		
No. 4	-	-		1	593		
No. 5	-	-		1	610		
No. 6	-	-		1	627		
CAPAS		DESCRIPCIÓN		1	644		
No. 1	Capa de materi	al granular combinado con s	suelo arcilloso	1	665		
No. 2	Suelo arcilloso plá	stico, color café claro con c	on vetas blancas	1	688		
No. 3	Suelo arcilloso plá	stico, color café claro con c	on vetas blancas	1	717		
No. 4		-		1	749		
No. 5		-		1	774		
No. 6		-		1	796		
	5. LECTURAS DEL A	NILLO DE CARGA		1	821		
1		11		1	844		
2		12		1	868		
3		13		1	890		
4		14					
5		15					
6		16					
7		17					
8		18					
9		19					
10		20					
		7. CONDICIONES	DEL SITIO Y OBSE	ERVACIONES GENERA	ALES		<u> </u>

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

Zona Descenso (pendiente), problema de aguas subterraneas, zona destruida. Muestra 2 boslsas subrasante existente

FECHA 01/11/2016 APUNTADOR AUC

APUNTADOR

AUC

FECHA

01/11/2016

Cosmitor	LanammeUCR						Refer to goallijn meninipal
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES		6. CBF	(DCP)	
PROVINCIA	Puntarenas	LONGITUD (Km):	3.5	MASA UTILIZADA (kg)	TILIZADA		
CANTON	Puntarenas	ANCHO PROM SR (m):	5-6	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m): 14		0	41		
CODIGO DEL CAMINO		C6-01-037		2	141		
DE:		COBANO		1	186		
A:		SAN-ISIDRIO		1	221		
	3. SOND	EOS		1	261		
SONDEO No		S 9		1	309		
ESTACIONAMIENTO		LADO DERECHO		1	362		
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	1	399		
N	9	39	01.9	5	404		
w	85	8	09.0	5	425		
	4. ESTRUCTURA D	DE PAVIMENTO		5	442		
CAPAS	DENOMINACION	ESPESOR	(cm)	5	459		
No. 1	TSB	2.5		5	479		
No. 2	BE	0-20		5	492		
No. 3	SR	-		5	508		
No. 4	-	-		5	520		
No. 5	-	-		5	536		
No. 6	-	-		5	556		
CAPAS		DESCRIPCIÓN		5	586		
No. 1	Trat	amiento superficial bitumino	so	5	611		
No. 2	Base est	abilizada con cemento (mal	estado)	5	626		
No. 3	Suelo su	brasante, arcilloso color cafe	é rojizo	5	636		
No. 4		-		5	651		
No. 5		-		5	662		
No. 6		-		5	674		
	5. LECTURAS DEL A	NILLO DE CARGA		5	691		
1		11		5	705		
2		12		5	725		
3		13		5	746		
4		14		5	768		
5		15		5	793		
6		16		5	823		
7		17		5	856		
8		18		5	884		
9		19					
10		20					
	•	7 CONDICIONES	DEL SITIO Y ORSE	RVACIONES GENERA	AI FS	-	•

7. CONDICIONES DEL SITIO Y OBSERVACIONES GENERALES

Zona desplazamientos laterales del TSB y BE, posible problema de manejo de aguas pluviales en curva- Se observa falta de paso de alcantarilla.

FECHA 01/11/2016 APUNTADOR AUC

FOTO 3

		UBIC	CACIÓN			
PROVINCIA	Puntarenas	Puntarenas CANTON Puntarenas				
SONDEO No			\$ 9			
CODIGO DEL CAMINO	C6-01-037		COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS
DE:	COBANO		N	9	39	01.9
A:	SAN-ISIDRIO		w	85	8	09.0

FOTOS

FOTO 2 FOTO 4

FOTO 3 FOTO 5

FECHA 01/11/2016 APUNTADOR AUC

FECHA

01/11/2016

SONDEOS A CIELO ABIERTO

COSIARICA	LanammeUCR		NIDEGO A GILLO	ADIENTO			Station de gestiljes membeljaal
1. UBICAC	CIÓN	2. DIMENSIONES (GENERALES		6. CBF	(DCP)	
PROVINCIA	Puntarenas	LONGITUD (Km):	3.5	MASA UTILIZADA (kg)			
CANTON	Puntarenas	ANCHO PROM SR (m):	5-6	No. GOLPES	LECTURA (mm)	No. GOLPES	LECTURA (mm)
DISTRITO	Cobano	ANCHO PROM DV (m):	14	0	57		
CODIGO DEL CAMINO		C6-01-037		1	119		
DE:		COBANO		5	176		
A:		SAN-ISIDRIO		5	222		
	3. SONE	DEOS		5	263		
SONDEO No		S 10		5	309		
ESTACIONAMIENTO		-		5	365		
COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS	5	428		
N	9	38	39.1	5	452		
w	85	8	12.7	5	482		
	4. ESTRUCTURA D	DE PAVIMENTO		3	527		
CAPAS	DENOMINACION	ESPESOR	(cm)	3	587		
No. 1	TSB	-		3	654		
No. 2	BE	20.0		2	697		
No. 3	SR	-		2	742		
No. 4	-	-		2	784		
No. 5	-	-		2	826		
No. 6	-	-		2	866		
CAPAS		DESCRIPCIÓN		1	886		
No. 1	Trat	amiento Superficial Bitumino	OSO				
No. 2	Base estabilizada co	on cemento en mala condició suelo	ón, combinada con				
No. 3	Sı	uelo arcilloso color café rojizo	0				
No. 4		-					
No. 5		-					
No. 6		-					
	5. LECTURAS DEL A	NILLO DE CARGA					
1		11					
2		12					
3		13					
4		14					
5		15					
6		16					
7		17					
8		18					
9		19					
10		20					
		7. CONDICIONES	DEL SITIO Y OBSE	RVACIONES GENERA	ALES		

APUNTADOR

AUC

FOTO 3

		UBIC	CACIÓN			
PROVINCIA	Puntarenas	Puntarenas CANTON Puntarenas				
SONDEO No			S 10			
CODIGO DEL CAMINO	C6-01-037		COORDENADAS GPS	GRADOS	MINUTOS	SEGUNDOS
DE:	COBANO		N	9	38	39.1
A:	SAN-ISIDRIO		w	85	8	13

FOTOS

FOTO 2 FOTO 4

FOTO 3 FOTO 5

FECHA 01/11/2016 APUNTADOR AUC

Informe de Ensayo

RC-80 v.06 (Sistema de Gestión de Calidad, LanammeUCR. Norma INTE ISO/IEC 17025:2005)

ST-1500-16

1. Información del cliente:

Nombre:

Unidad de Gestión Municipal (Ing. Alonso Ulate).

Proyecto:

Municipalidad de Cóbano.

Domicilio:

400 metros norte de Muñoz y Nanne, San Pedro, Montes de Oca, San José.

2. Método de ensayo:

IT-GC-01 (ASTM D 422) (**)

Método de ensayo para el análisis de tamaño de partículas de suelo (vía seca y húmeda).

IT-GC-02 (ASTM D 2216) (*).

Procedimiento para determinar el contenido de humedad de suelos y rocas.

IT-GC-04 (ASTM D 854) (*)

Procedimiento para determinar la gravedad específica del suelo mediante un picnómetro con agua.

IT-GC-05 (ASTM D 4318) (*)

Procedimiento para determinar el límite líquido, límite plástico e índice de plasticidad de un suelo.

- (*) Ensayo acreditado. Ver alcance en www.eca.or.cr.
- (**) Ensayo no acreditado. Ver alcance en www.eca.or.cr.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

No. de identificación: Descripción: 2 Bolsas con material rasante, aproximadamente 20 kg. Identificadas por el cliente como: S1 Montezuma, material combinado de suelo limo-arcilloso, con arena y roca degradable, con partículas de hasta 38,1 mm de diámetro. 2 Bolsas con material rasante, aproximadamente 20 kg. Identificadas por el cliente como: S2 las Delicias, suelo amarillento "alterado" tipo limoso, con bloques de suelo arcilloso rojizo y alto contenido de roca degradable blancuzca de hasta 38,1 mm de diámetro.

Dirección: 500 metros al Norte del Supermercado Muñoz y Nanne. Finca 2, Universidad de Costa Rica.

Apartado: 11501-2060 San Pedro, Montes de Oca, San José, Costa Rica. Teléfono: 2511-2500 Fax: 2511-4440 Email: direccion.lanamme@ucr.ac.cr

www.lanamme.uer.ac.cr

LanammeUCR
Laboratorio Nacional de
Materiales y Modelos Estructurales
U.C.R.

Página 1 de 17

2620-16

2 Bolsas con material rasante, aproximadamente 20 kg. Identificadas por el cliente como: S4 tramo 2 M.P.-Santa Teresa, suelo limo-arcilloso arenoso, color gris verduzco oscuro, presenta aisladas partículas de roca semicompacta de hasta 38,1 mm de diámetro.

2621-16

1 Saco con material subrasante, aproximadamente 20 kg. Identificadas por el cliente como: S5 tramo 3 M.P.-Santa Teresa, material mayormente rocoso, color gris claro, de partícula compacta, cúbicas y redondeadas, de hasta 50,8 mm de diámetro, con rastros de suelos limosos.

2622-16

1 Saco con material subrasante, aproximadamente 20 kg. Identificadas por el cliente como: S6 tramo 3 M.P.-Santa Teresa, material combinado de material rocoso, gris claro, medianamente compacto, algo degradable, con tamaños de hasta 50,8 mm de diámetro, con suelo cohesivo, tipo MH, color verduzco.

2623-16

1 Saco con material subrasante, aproximadamente 20 kg. Identificadas por el cliente como: S7 tramo 4 M.P.-Santa Teresa, material combinado de material rocoso, gris claro, medianamente compacto, algo degradable, con tamaños de hasta 50,8 mm de diámetro, con suelo cohesivo, tipo MH, color verduzco.

2624-16

2 Bolsas de material subrasante, aproximadamente 20 kg. Identificadas por el cliente como: S 8 TSB San Isidro, suelo limoarenoso arcilloso, color café grisáceo oscuro, presenta poco material rocoso.

Aportadas por:

Ing. Alonso Ulate.

Fecha de recepción:

2016/11/09

Fecha de realización del ensayo:

2016/11/15-2016/12/09

4. Información del muestreo:

Fecha de muestreo:

2618-16 a 2619-16 2016/10/31 2620-16 a 2624-16 2016/11/01

Ubicación:

Cóbano, Puntarenas.

Procedimiento de muestreo:

Muestreo de agregado realizado por la Unidad de Gestión Municipal de acuerdo a la norma ASTM

Página 2 de 17
Lanamme UCR
Laboratorio Nacionai de
Materiales y Modelos Estructurales
U.C.R.

D-75. Personal responsable de las muestras: Ing. Alonso Ulate.

Condiciones ambientales:

No aplica pues en el laboratorio los especímenes se acondicionan.

5. Resultados:

Tabla 1. Límite líquido, límite plástico e índice de plasticidad de un suelo, muestras indicadas.

MUESTRA	LÍMITE LÍQUIDO	LÍMITE PLASTICO	ÍNDICE PLASTICIDAD
2618-16	34	24	10
2619-16	57	34	23
2620-16	63	36	27
2621-16	35	22	13
2622-16	49	31	18
2623-16	48	30	18
2624-16	53	29	24

Nota:

- Las muestras fueron acondicionadas por el método de preparación seco.
- El límite líquido se determina según el método A (método multipunto) de la norma ASTM D-4318.

Tabla 2. Contenido de Humedad de los suelos y rocas, muestras indicadas.

MUESTRA No.	HUMEDAD NATURAL (%)
2618-16	17,8
2619-16	36,6
2620-16	36,3
2621-16	11,8
2622-16	21,0
2623-16	24,3
2624-16	25,4

Tabla 3. Gravedad específica del suelo, muestras indicadas.

A STATE OF THE STA	· · · · · · · · · · · · · · · · · · ·		
MUESTRA	MÉTODO	G_T	Gs
2618-16	В	2,607	2,605
2619-16	В	2,592	2,590
2620-16	В	2,454	2,452
2621-16	В	2,609	2,607
2622-16	В	2,530	2,529
2623-16	В	2,550	2,548
2624-16	В	2,696	2,694

DE MATERIALES Y MODELOS ESTRUCTURALES

Tabla 4. Resultados del análisis granulométrico, muestra M-2618-16.

MASA INICIAL:	2618	g	MASA FINAL:	1859	g
MALLA No.	ABERTURA (mm)	MASA RET.	% RET.	% RET AC.	% PAS.
1 1/2"	37,5	0,00	0,00	0,00	100
1"	25,0	76,9	2,94	2,94	97,1
3/4"	19,0	135	5,14	8,08	91,9
1/2"	12,5	167	6,38	14,5	85,5
3/8"	9,50	132	5,05	19,5	80,5
Nº 4	4,75	293	11,2	30,7	69,3
Nº 10	2,00	347	13,2	43,9	56,1
Nº 20	0,85	243	9,30	53,2	46,8
Nº 40	0,43	131	4,99	58,2	41,8
Nº60	0,25	85,2	3,25	61,5	38,5
N°100	0,15	86,7	3,31	64,8	35,2
Nº140	0,11	68,0	2,60	67,4	32,6
N°200	0,08	94,8	3,62	71,0	29,0

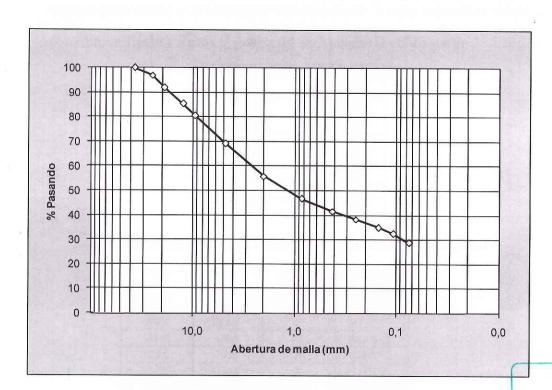


Gráfico 1. Curva granulométrica, muestra M-2618-16.

DE MATERIALES Y MODELOS ESTRUCTURALES

Tabla 5. Resultados del análisis granulométrico, muestra M-2619-16.

MASA INICIAL:	A INICIAL: 1202 g		MASA FINAL:	508	g
MALLA No.	ABERTURA (mm)	MASA RET.	% RET.	% RET AC.	% PAS.
1"	25,0	0,00	0,00	0,00	100
3/4"	19,0	32,5	2,70	2,70	97,3
1/2"	12,5	47,4	3,94	6,65	93,4
3/8"	9,50	43,0	3,58	10,2	89,8
Nº 4	4,75	75,3	6,26	16,5	83,5
Nº 10	2,00	85,6	7,12	23,6	76,4
N° 20	0,85	67,3	5,60	29,2	70,8
Nº 40	0,43	37,0	3,08	32,3	67,7
Nº60	0,25	26,0	2,16	34,4	65,6
Nº100	0,15	31,6	2,63	37,1	62,9
Nº140	0,11	25,6	2,13	39,2	60,8
Nº200	0,08	36,7	3,05	42,3	57,7

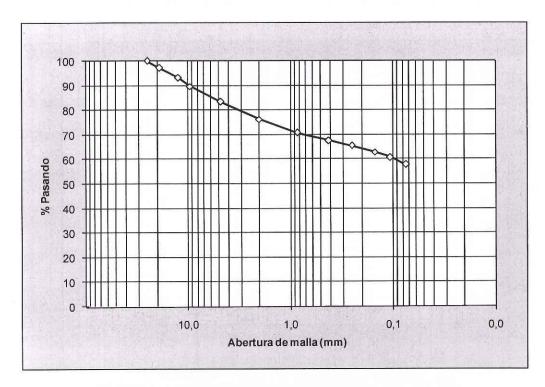


Gráfico 2. Curva granulométrica, muestra M-2619-16.

Alcance disponible en www.eca.or.cr

Tabla 6. Resultados del análisis granulométrico, muestra M-2620-16.

MASA INICIAL:	2003	g	MASA FINAL:	1023 g	
MALLA No.	ABERTURA (mm)	MASA RET.	% RET,	% RET AC.	% PAS.
1 1/2"	37,5	0,00	0,00	0,00	100
1"	25,0	21,7	1,09	1,09	98,9
3/4"	19,0	49,9	2,49	3,58	96,4
1/2"	12,5	109	5,42	9,00	91,0
3/8"	9,50	95,5	4,77	13,8	86,2
Nº 4	4,75	199	9,93	23,7	76,3
Nº 10	2,00	171	8,54	32,2	67,8
Nº 20	0,85	98,3	4,91	37,1	62,9
Nº 40	0,43	50,3	2,51	39,7	60,3
Nº60	0,25	34,9	1,74	41,4	58,6
Nº100	0,15	51,9	2,59	44,0	56,0
Nº140	0,11	58,0	2,90	46,9	53,1
Nº200	0,08	84,3	4,21	51,1	48,9

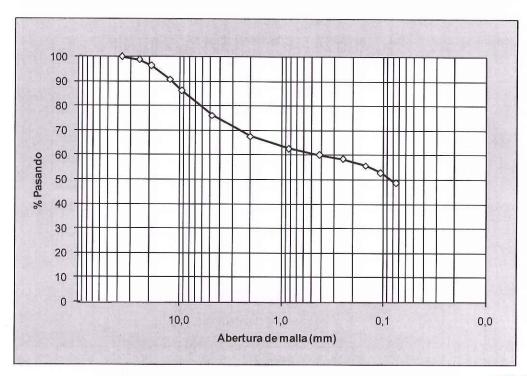


Gráfico 3. Curva granulométrica, muestra M-2620-16.

DE MATERIALES Y MODELOS ESTRUCTURALES

Tabla 7. Resultados del análisis granulométrico, muestra M-2621-16.

MASA INICIAL:	9580 g		MASA FINAL:	7810 (g
MALLA No.	ABERTURA (mm)	MASA RET.	% RET.	% RET AC.	% PAS.
2"	50,0	0,00	0,00	0,00	100
1 1/2"	37,5	265,5	2,77	2,77	97,2
1"	25,0	232,9	2,43	5,20	94,8
3/4"	19,0	544,4	5,68	10,9	89,1
1/2"	12,5	1045	10,9	21,8	78,2
3/8"	9,50	732	7,64	29,4	70,6
Nº 4	4,75	1416	14,8	44,2	55,8
Nº 10	2,00	1163	12,1	56,4	43,6
Nº 20	0,85	799	8,34	64,7	35,3
Nº 40	0,43	547	5,71	70,4	29,6
Nº60	0,25	389	4,06	74,5	25,5
Nº100	0,15	331	3,46	77,9	22,1
Nº140	0,11	182	1,90	79,8	20,2
N°200	0,08	163	1,70	81,5	18,5

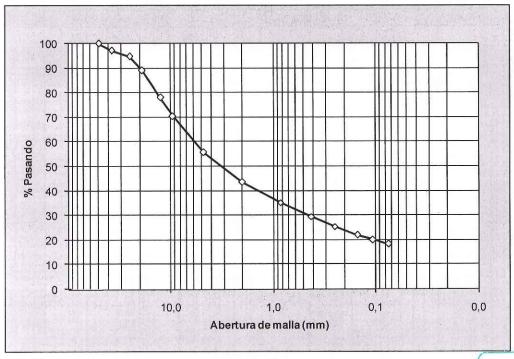
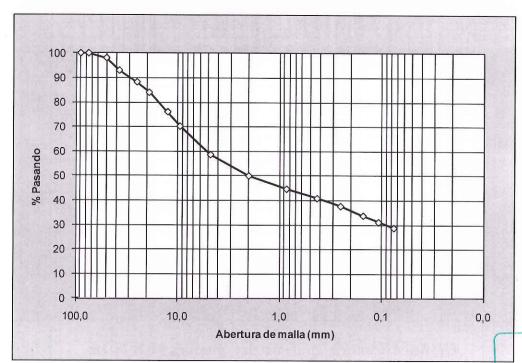


Gráfico 4. Curva granulométrica, muestra M-2621-16.

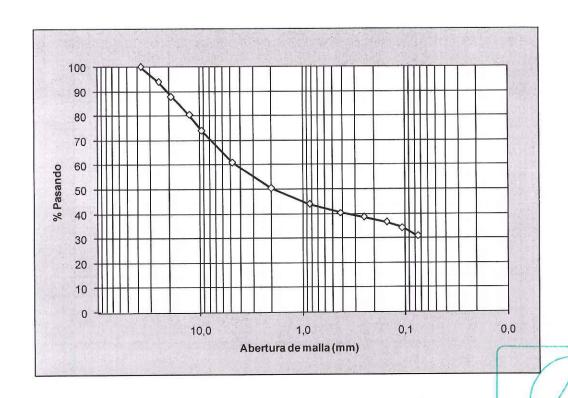


DE MATERIALES Y MODELOS ESTRUCTURALES

Tabla 8. Resultados del análisis granulométrico, muestra M-2622-16.

/ASA INICIAL:	10165 g		MASA FINAL:	7233	g
MALLA No.	ABERTURA (mm)	MASA RET.	% RET.	% RET A.C.	% PAS.
3 1/2"	90,0	0,0	0,00	0,00	100
3"	75,0	0,0	0,00	0,00	100,0
2"	50,0	198	1,94	1,94	98,1
1 1/2"	37,5	510	5,02	7,0	93,0
1"	25,0	486	4,78	11,7	88,3
3/4"	19,0	433	4,26	16,0	84,0
1/2"	12,5	802	7,89	23,9	76,1
3/8"	9,50	591	5,82	29,7	70,3
Nº 4	4,75	1184	11,7	41,4	58,6
Nº 10	2,00	875	8,61	50,0	50,0
Nº 20	0,85	543	5,34	55,3	44,7
Nº 40	0,43	381	3,75	59,1	40,9
Nº60	0,25	326	3,20	62,3	37,7
№ 100	0,15	397	3,91	66,2	33,8
№ 140	0,11	270	2,66	68,8	31,2
№200	0,08	236	2,32	71,2	28,8

DE MATERIALES Y MODELOS ESTRUCTURALES



No. de informe: I-1589-16

Gráfico 5. Curva granulométrica, muestra M-2622-16.

Tabla 9. Resultados del análisis granulométrico, muestra M-2623-16.

MASA INICIAL:	8531 g		MASA FINAL:	5884	g	
MALLA No.	ABERTURA (mm)	MASA RET.	% RET.	% RET AC.	% PAS.	
1 1/2"	37,5	0,00	0,00	0,00	100	
1"	25,0	507	5,95	5,95	94,1	
3/4"	19,0	515	6,03	12,0	88,0	
1/2"	12,5	642	7,53	19,5	80,5	
3/8"	9,50	548	6,43	25,9	74,1	
Nº 4	4,75	1100	12,9	38,8	61,2	
Nº 10	2,00	910	10,7	49,5	50,5	
Nº 20	0,85	558	6,54	56,0	44,0	
Nº 40	0,43	285	3,34	59,4	40,6	
Nº60	0,25	159	1,86	61,2	38,8	
Nº100	0,15	183	2,14	63,4	36,6	
Nº140	0,11	191	2,23	65,6	34,4	
Nº200	0,08	287	3,36	69,0	31,0	

Página 9 de 17 Lanamme UCR

Laboratorio Nacional de Materiales y Modelos Estructurales U.C.R.

Gráfico 6. Curva granulométrica, muestra M-2623-16.

Tabla 10. Resultados del análisis granulométrico, muestra M-2624-16.

MASA INICIAL:	1885 g		MASA FINAL:	247	g		
MALLA No.	ABERTURA (mm)	MASA RET.	% RET.	% RET AC.	% PAS.		
3/4"	19,0	0,00	0,00	0,00	100		
1/2"	12,5	5,96	0,32	0,32	99,7		
3/8"	9,50	7,26	0,39	0,70	99,3		
Nº 4	4,75	4,75	4,75	13,9	0,74	1,44	98,6
Nº 10	2,00	12,0	0,64	2,07	97,9		
Nº 20	0,85	9,1	0,48	2,56	97,4		
Nº 40	0,43	11,1	0,59	3,15	96,9		
Nº60	0,25	30,1	1,60	4,75	95,3		
Nº100	0,15 61,9	0,15 61,9 0,11 42,1	3,28	8,03	92,0		
Nº140	0,11		2,24	10,3	89,7		
Nº200	0,08	53,6	2,84	13,1	86,9		

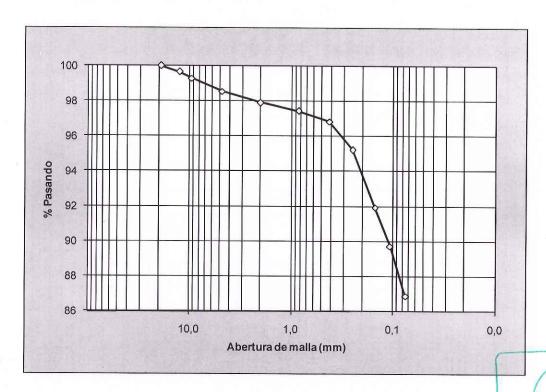


Gráfico 7. Curva granulométrica, muestra M-2624-16.

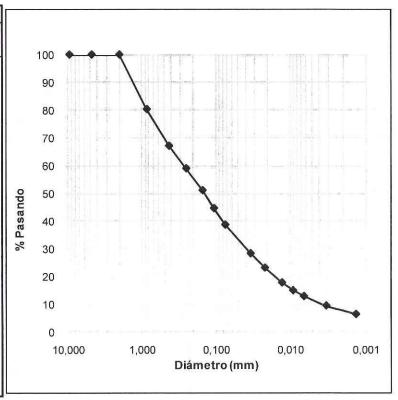

Página 10 de 17
Lanamme UCR
Laboratorio Nacional de
Materiales y Modelos Estructurales
U.C.R.

Tabla 11. Análisis granulométrico de suelos vía húmeda, muestra M-2618-16.

Tamiz	% Más Finos	Diámetro
No.		(mm)
3/8"	100	9,500
Nº 4	100	4,750
Nº 10	100,0	2,000
Nº 20	80,3	0,850
Nº 40	67,1	0,425
Nº60	59,0	0,250
Nº 100	51,1	0,150
№ 140	44,6	0,106
№200	38,6	0,075
	28,3	0,034
	23,1	0,022
	17,8	0,013
	14,9	0,009
	12,8	0,006
	9,4	0,003
	6,4	0,001
amno de d	dispersión:	16h

DE MATERIALES Y MODELOS ESTRUCTURALES

No. de informe: I-1589-16

Tabla 12. Análisis granulométrico de suelos vía húmeda, muestra M-2619-16.

Tamiz	% Más Finos	Diámetro	11				
No.		(mm)		100			
3/8"	100	9,500		100			
Nº 4	100	4,750		90			
V° 10	100,0	2,000					
№ 20	87,9	0,850		80	X		
№ 40	78,0	0,425		70		X	
1 º60	71,9	0,250			##	×	
100	65,9	0,150		60		-	
140	61,6	0,106		\ \ \ \ \			
200	58,0	0,075	ll ğ	50			
	51,1	0,032	% Pasando	40			1
	44,5	0,021	P _a	5-50 Hill			1
	40,4	0,012	%	30			
	36,2	0,009		20			
	33,9	0,006		20			
	27,2	0,003		10			
	20,8	0,001					
				0	- Carrier -		
				10,000	1,000 [0,100 Diámetro (mm)	0,01
npo de d	lispersión:	16h	11				

0,001

DE MATERIALES Y MODELOS ESTRUCTURALES

Tabla 13. Análisis granulométrico de suelos vía húmeda, muestra M-2620-16.

Tamiz	% Más Finos	Diámetro							
No.		(mm)		100					
3/8"	100	9,500	1	100					
Nº 4	100	4,750	1	90					
Nº 10	100	2,000							
Nº 20	93,5	0,850	ll .	80			A		
Nº 40	88,7	0,425		70					
Nº60	85,6	0,250		1.050			/		
Nº 100	81,9	0,150		60		4			
Nº 140	77,5	0,106	_	50					
Nº 200	72,8	0,075	% Pasando	50				N. Carlotte	
	62,8	0,032	ll sa	40				•	
	56,4	0,021	1 %					•	
	49,8	0,012	%	30					•
	47,7	0,009		20					
	42,6	0,006		20					
	37,2	0,003		10					
	30,3	0,001		0	false has a law as		1 = -10 1 = 10		
				10	0,000	1,000 Di á	0,100 metro (mm)	0,010	0,001
Tiempo de (dispersión:	16h							

No. de informe: I-1589-16

Tabla 14. Análisis granulométrico de suelos vía húmeda, muestra M-2621-16.

Tamiz	% Más Finos	Diámetro	11						
No.		(mm)		100					
3/8"	100	9,500	1	100					
Nº 4	100	4,750		90		1			
Nº 10	100,0	2,000							
Nº 20	77,4	0,850	1	80		- 6			
Nº 40	61,8	0,425	1	70					
Nº60	52,9	0,250		10			11111		
№ 100	45,9	0,150		60					
Nº140	41,8	0,106	_	20			b		
Nº200	38,6	0,075	ĕ	50					
	28,0	0,034	% Pasando	40			1		
	26,0	0,022	Pa						
	22,9	0,013	%	30					
	20,8	0,009	li	20				N.	
	18,9	0,006	ľ	20				~~	
	16,8	0,003	l	10					
	15,5	0,001	l						
			ll	0	April 100	100000			
				10	0,000	1,000	0,100	0,010	0,001
							Diámetro (mm)		
Tiempo de d	lispersión:	16h							

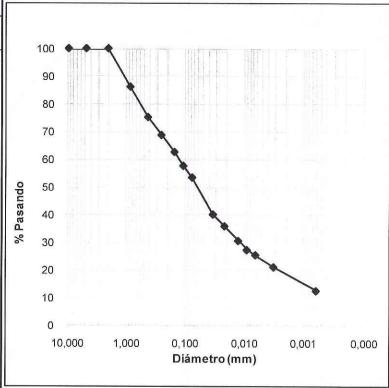
LABORATORIO NACIONAL

DE MATERIALES Y MODELOS ESTRUCTURALES

No. de informe: I-1589-16

Tabla 15. Análisis granulométrico de suelos vía húmeda, muestra M-2622-16.

Tamiz	de dispersión: Bat % Más Finos	Diámetro	11						
No.	70 11100 1 11700	(mm)							
3/8"	100	9,500	1	100	1	V IIIIII			
			l	00					
Nº 4	100	4,750	l,	90					
Nº 10	100,0	2,000		80		- 1	1		
Nº 20	90,9	0,850		00					
Nº 40	81,3	0,425		70			\	4	
Nº60	73,3	0,250			Hills:				
Nº 100	63,9	0,150	l	60	HHHH		1-		
№ 140	57,0	0,106		50					
Nº200	51,4	0,075	ng	50					
	38,3	0,034	% Pasando	40			1		
	33,9	0,022	l g					X	
	27,8	0,013	%	30				A.	
	25,7	0,009	1	20				1	
	22,6	0,006	H	20					
	18,3	0,003		10					
	13,8	0,001							
				0					
				10	0,000	1,000	0,100	0,010	0,001
							Diámetro (mm)		
Tiempo de d	dispersión:	16h							


LABORATORIO NACIONAL DE MATERIALES Y MODELOS ESTRUCTURALES

Laboratorio de ensayo
Alcance de Acreditación Nº, LE-018
Acredidad o partir de: 11,11,2002
De manera incleinda Art II, Decreo gocurio 93527 y un monificaciones
Alcance disponible en www.eca.or.cr

No. de informe: I-1589-16

Tabla 16. Análisis granulométrico de suelos vía húmeda, muestra M-2623-16.

Tamiz	% Más Finos	Diámetro
No.		(mm)
3/8"	100	9,500
Nº 4	100	4,750
Nº 10	100,0	2,000
Nº 20	86,2	0,850
Nº 40	75,3	0,425
Nº60	68,8	0,250
Nº 100	62,7	0,150
№140	57,7	0,106
№200	53,5	0,075
	40,2	0,033
	36,0	0,021
	30,7	0,013
	27,5	0,009
	25,6	0,006
	21,2	0,003
	12,7	0,001
1	lispersión:	16h

LABORATORIO NACIONAL

DE MATERIALES Y MODELOS ESTRUCTURALES

No. de informe: I-1589-16

Tabla 17. Análisis granulométrico de suelos vía húmeda, muestra M-2624-16.

Tamiz	% Más Finos	Diámetro			
No.		(mm)		100	
3/8"	100	9,500			
Nº 4	100	4,750	l	90	
№ 10	96,8	2,000			
Nº 20	96,2	0,850	11	80	
Nº 40	95,9	0,425		70	
№ 60	95,7	0,250			
√°100	95,5	0,150		60	
№140	95,4	0,106			
№ 200	95,3	0,075	ll opu	50	
	88,2	0,026	% Pasando	40	
	81,9	0,017	Pa		
	70,7	0,010	%	30	
	64,6	0,008		20	
	55,4	0,006		20	
	39,9	0,003		10	
	9,2	0,001			
				O The state of the	
				10,000 1,000 0,100 0,010 0,001	0,0
			11	Diámetro (mm)	

Nota:

- El ensayo del hidrómetro es realizado para todas las muestras con material pasando el tamiz Nº 10.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Preparó:

Ing. Oscar Valerio Salas Jefe Laboratorio de Geotecnia Revisó:

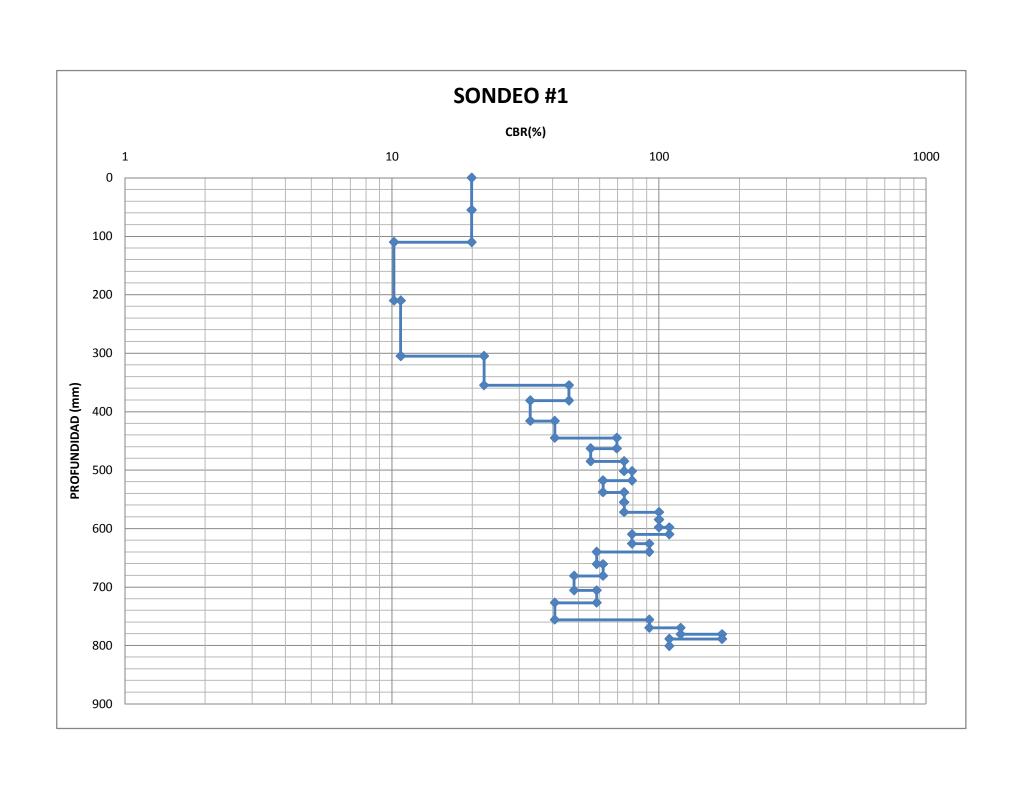
Ing. Guillermo González Beltrán, Ph.D. Coordinador General de Laboratorios

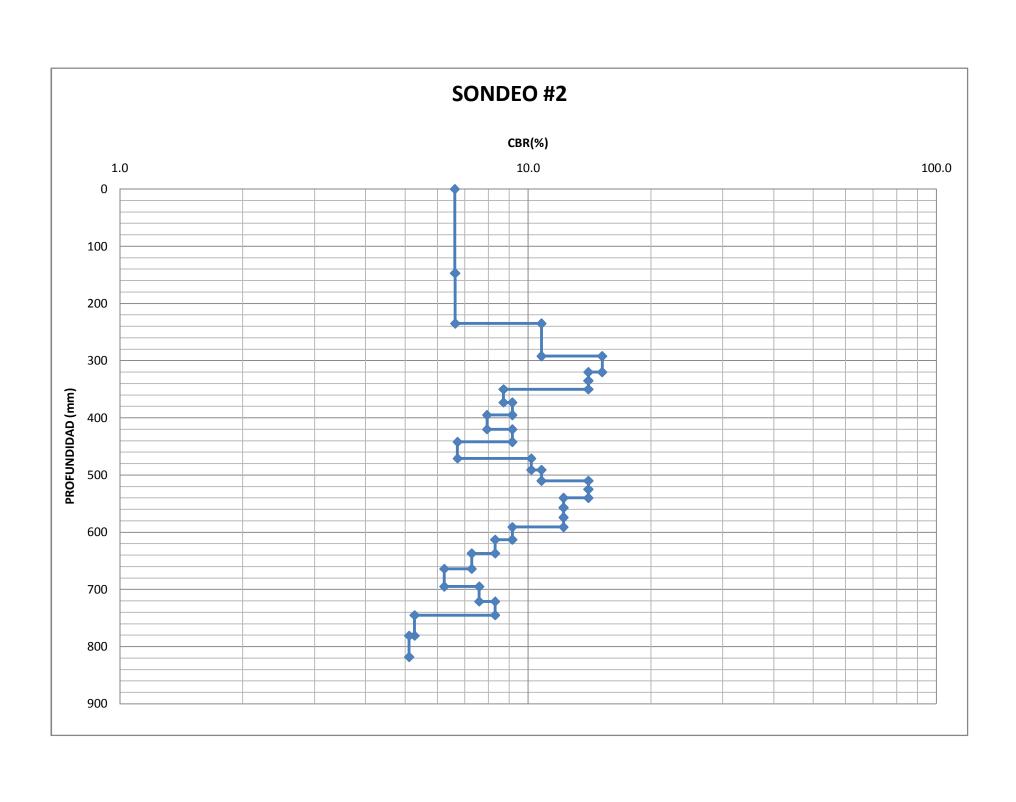
Aprobó:

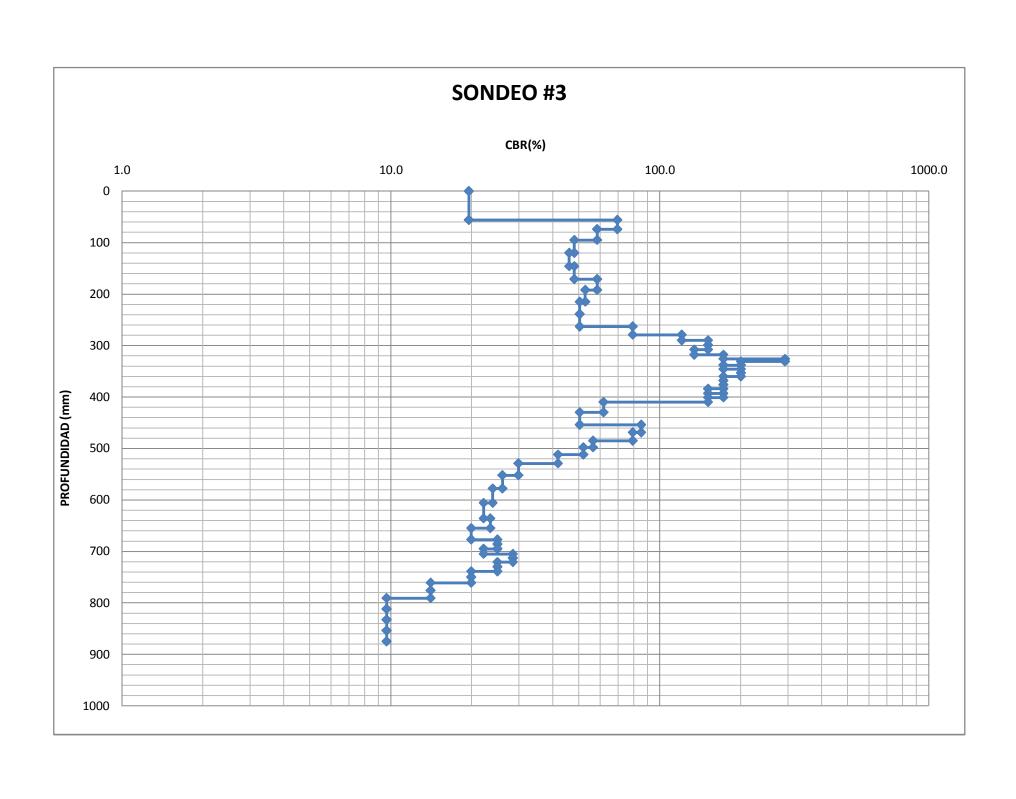
Ing. Alejandro Navas Carro, M.Sc.

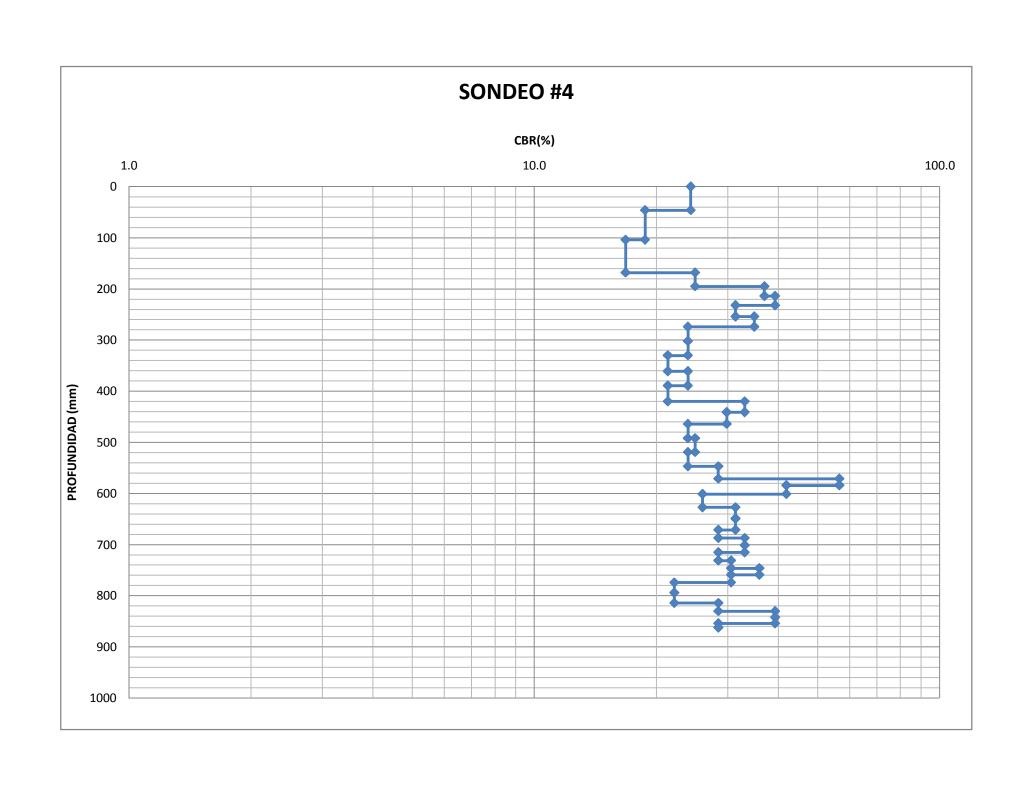
Director Lanamme UCR

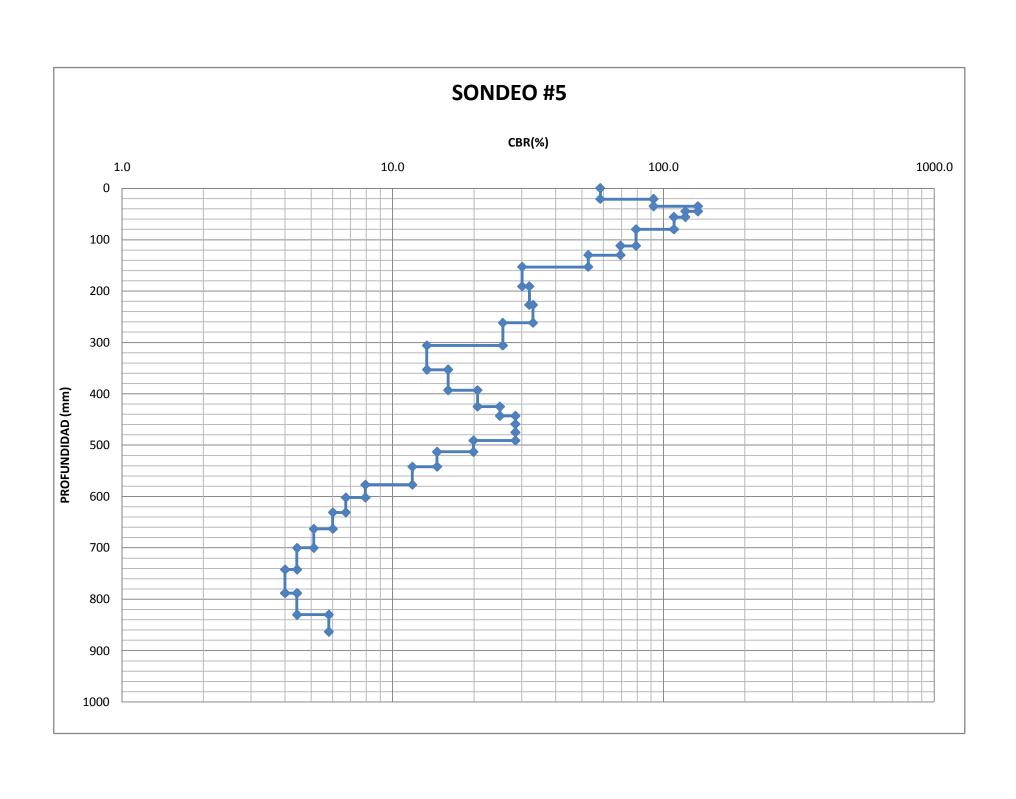
Página 17 de 17

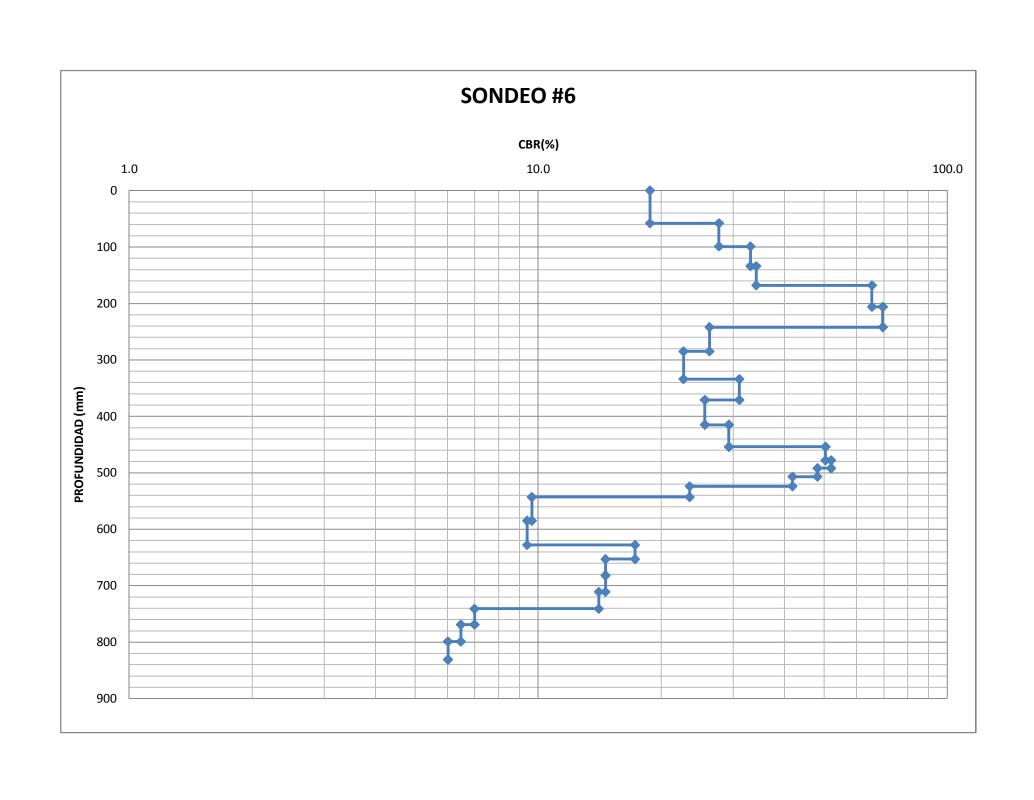

LanammeUCR

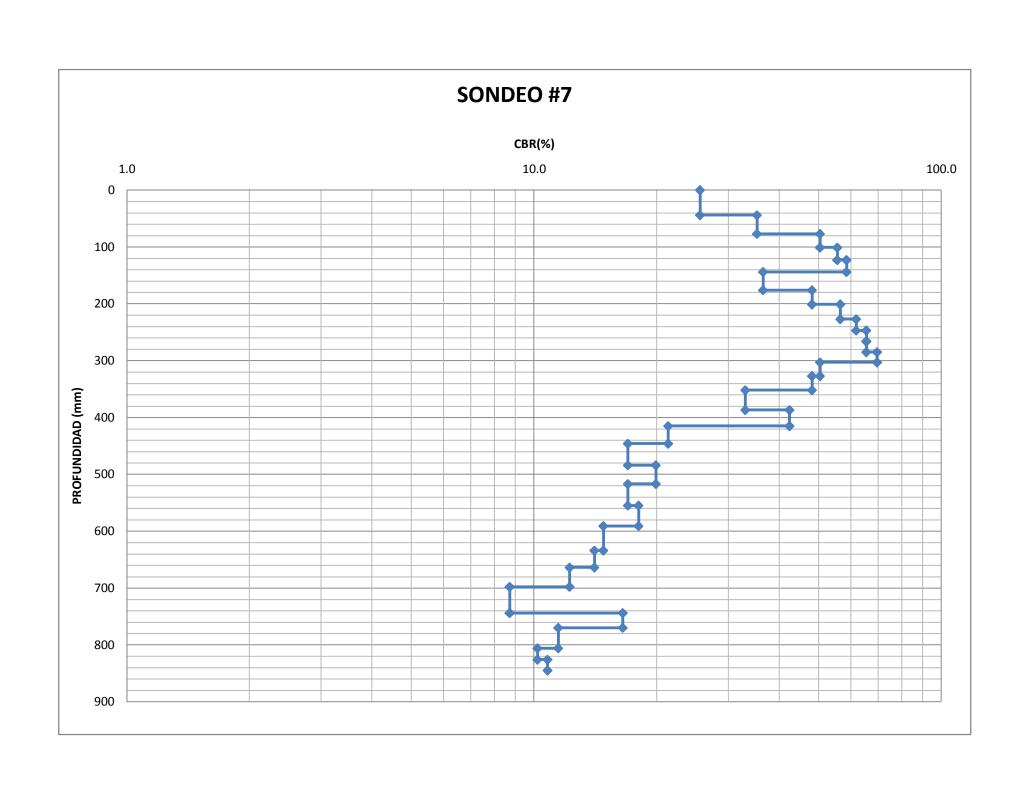

Laboratorio Nacional de

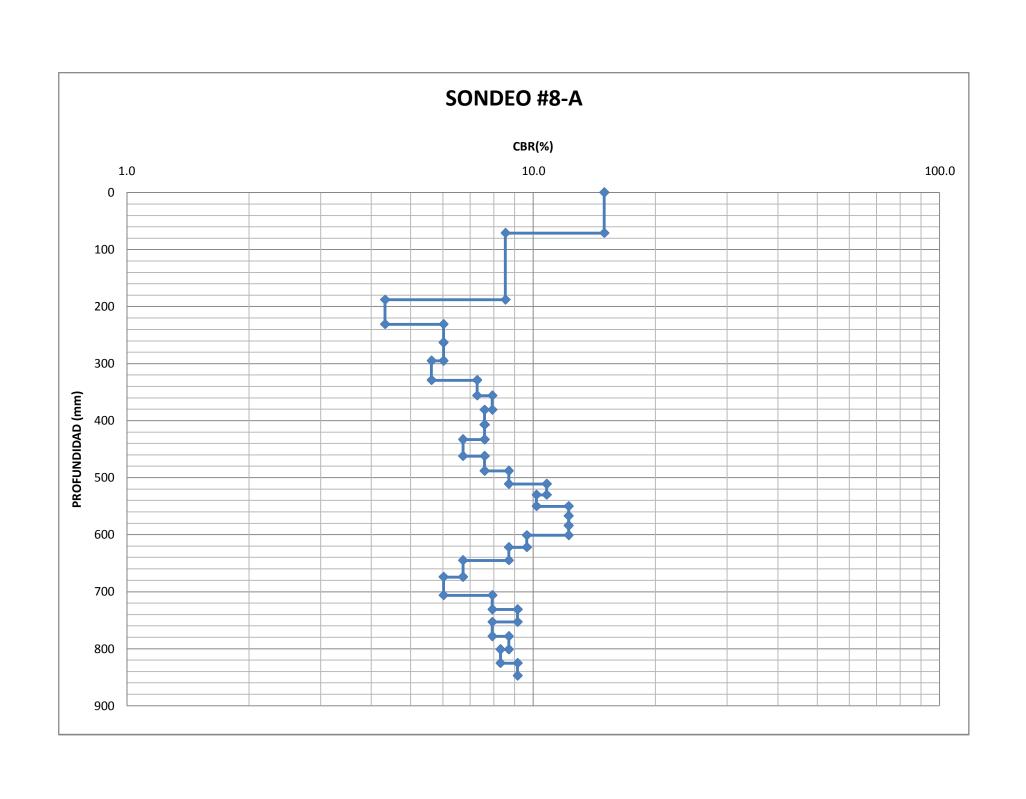

Materiales y Modelos Estructurales

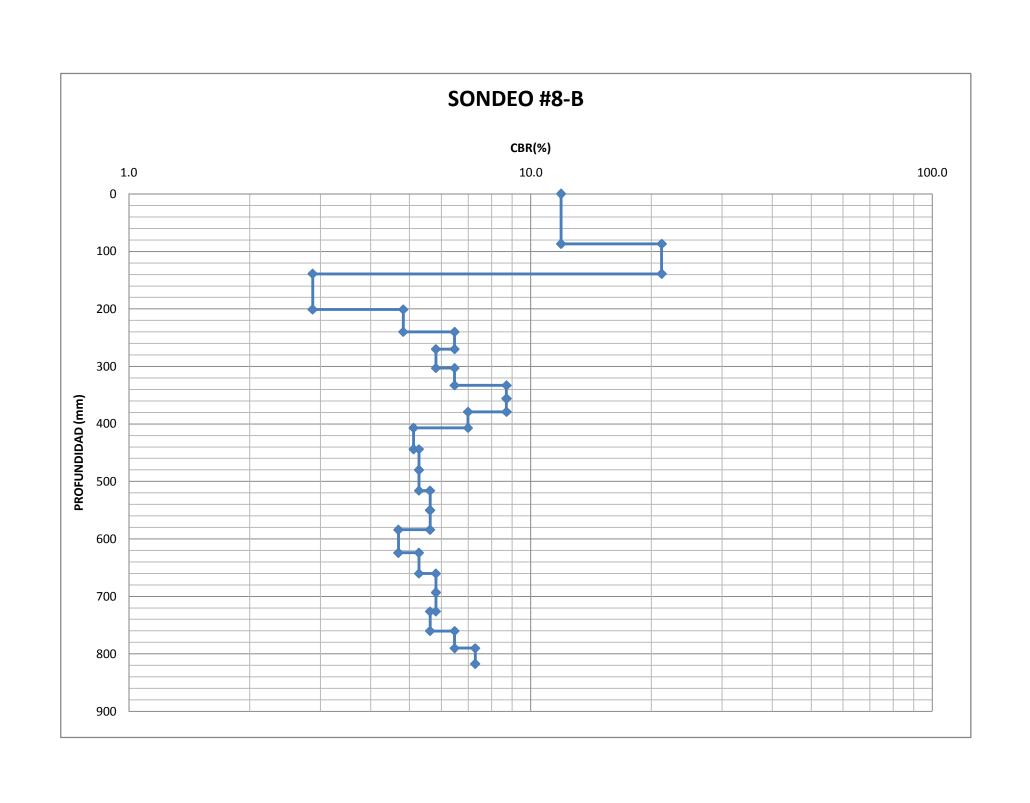

U.C.R.

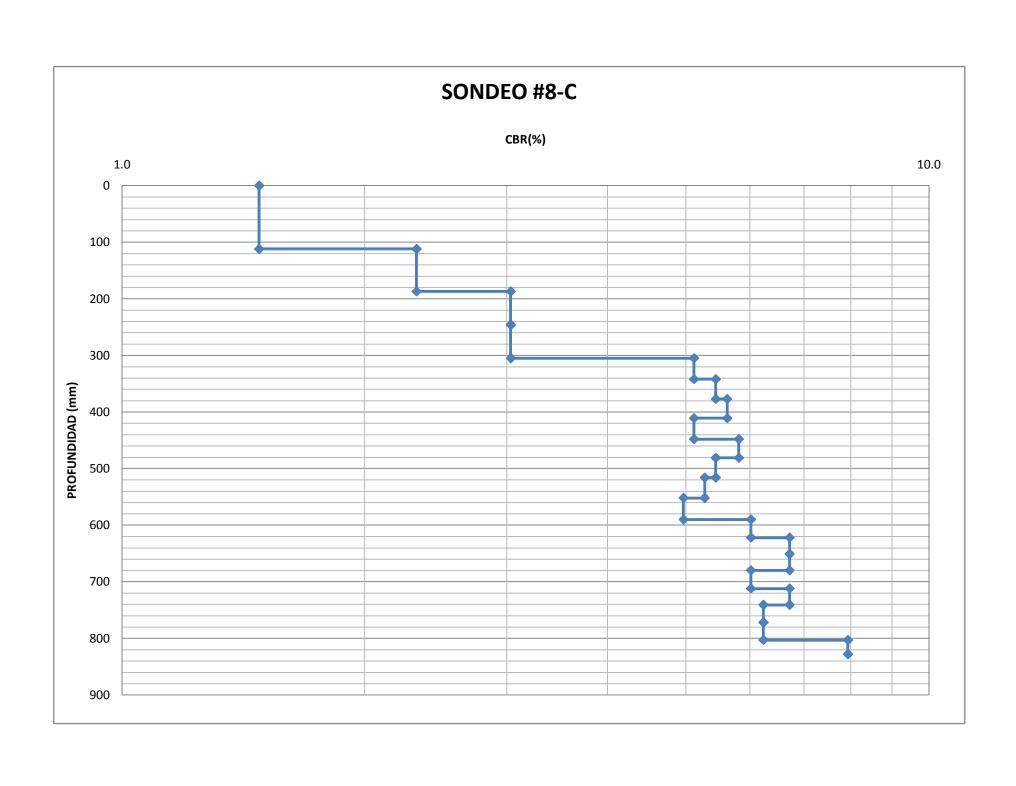


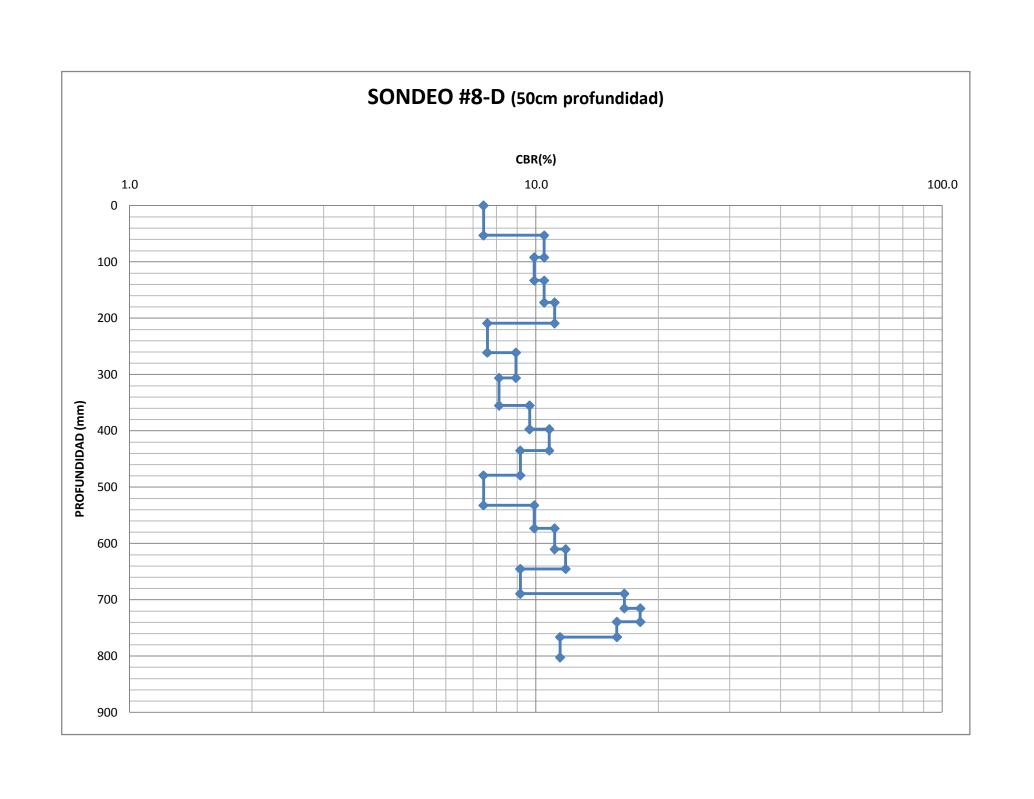


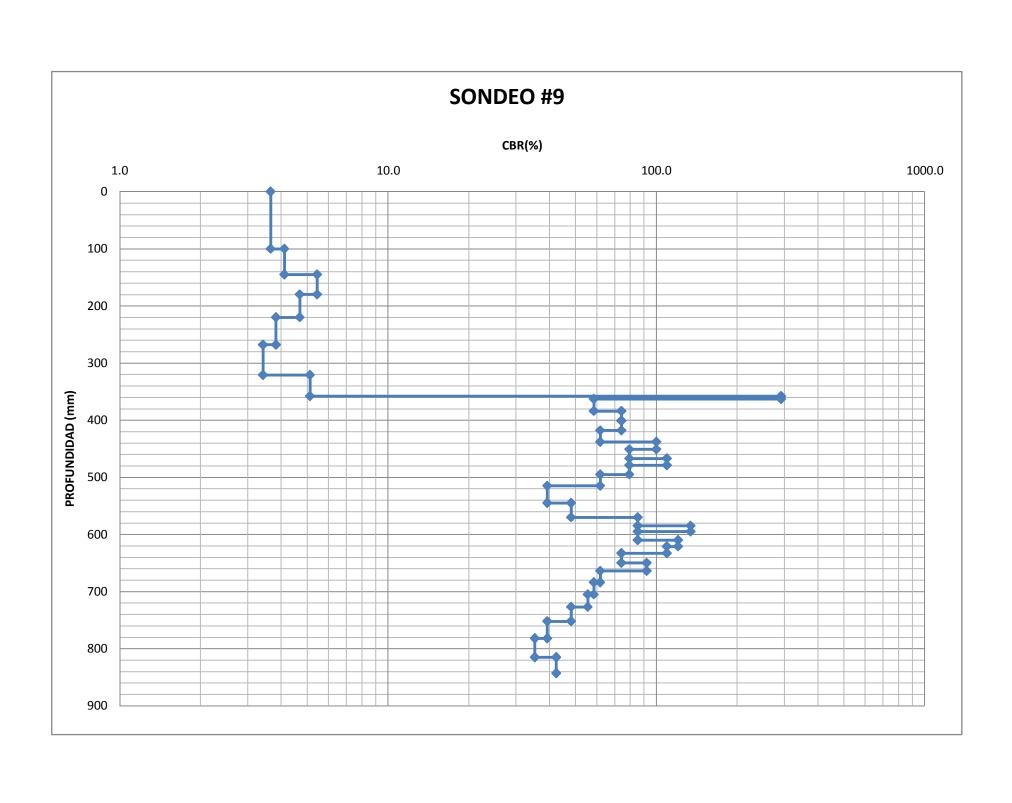


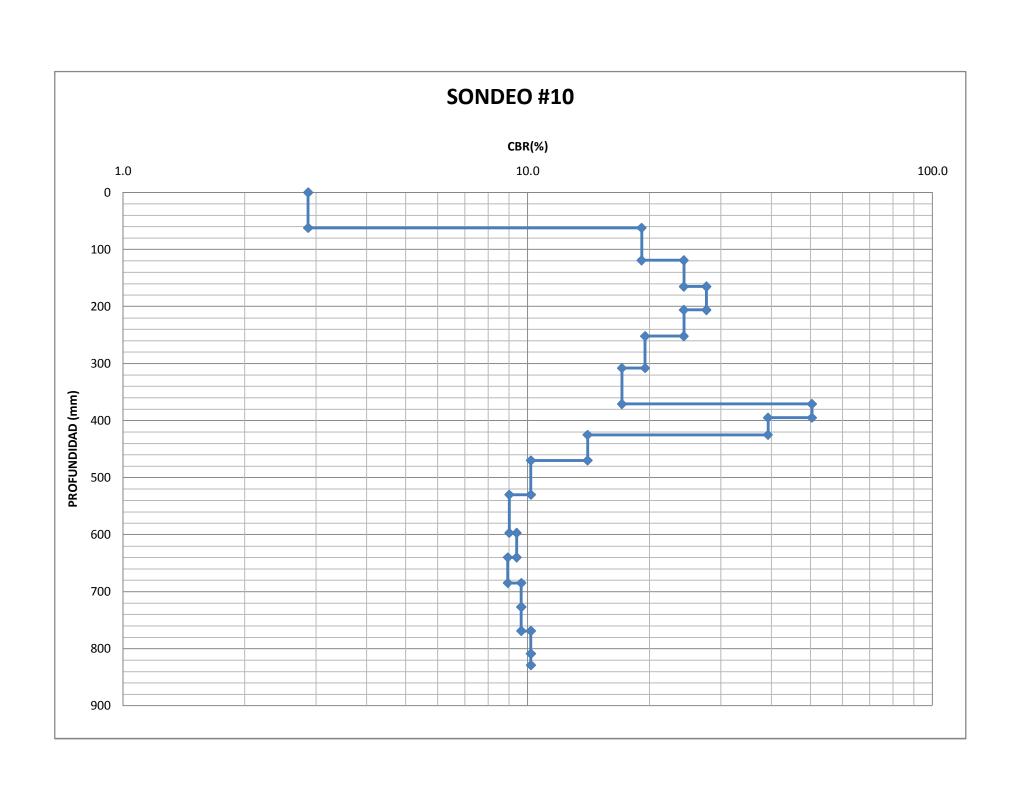












Informe de Ensayo

RC-80 v.08 (Sistema de Gestión de Calidad, LanammeUCR. Norma INTE ISO/IEC 17025:2005)

ST- 886 -17

1. Información del cliente:

Nombre:

Unidad de Gestión Municipal, PITRA

Ing. Alonso Ulate Castillo

Proyecto:

Evaluación de estabilización de base en un tramo en Cóbano - Guanacaste

Domicilio:

Lanamme. Universidad de Costa Rica, San Pedro, Montes de Oca, San José.

2. Método de ensayo:

ASTM C136 (**). Procedimiento para el análisis por mallas de agregado fino y grueso.

AASHTO T 180 (*). Método estándar de ensayo para la relación densidad-humedad de materiales granulares usando mazo de 4,54 kg y una caída de 457 mm.

AASHTO T 89 y AASHTO T 90 (*). Métodos estándar de ensayo para la determinación de los límites de Atterberg.

AASHTO T 89 y AASHTO T 90 (*). Métodos estándar de ensayo para la determinación de los límites de Atterberg.

ASTM D-1633 (**). Preparación y determinación de la compresión inconfinada de bases estabilizadas.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr

(**) Ensayo no acreditado.

Dirección: 500 metros Norte de Muñoz y Nanne. Finca 2, Universidad de Costa Rica. Apartado 11501-2060, Costa Rica. Teléfono: 2511-2500, Fax: 2511-4440 E-mail: dirección.lanamme@ucr.ac.cr

www.lanamme.ucr.ac.cr

Labor **Rágina**cibrded 13 Materiales y Modeios Estructurales U.C.R.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

No. de identificación:	<u>Descripción:</u>
M-339 -17	3 sacos (aprox 120 kg), Material de rasante existente, suelo combinado con grava Camino Malpais-Santa Teresa, Cobano. Identificados como: Cobano, Sondeo #1 Muestra #1, #2 y #3
M-340 -17	3 sacos (aprox 120 kg), Material de rasante existente, suelo combinado con grava Camino Malpais-Santa Teresa, Cobano. Identificados como: Cobano, Sondeo #1 Muestra #1, #2 y #3

Aportadas por:

Ing. Alonso Ulate

Fecha de recepción:

2017/02/28

Fecha de realización del ensayo:

2017/03/23 al 2017/03/31

4. Información del muestreo:

La muestra fue suministrada por el cliente en nuestras instalaciones.

5. Resultados:

Inicialmente el material suministrado se homogenizó y se cuarteó para llevar a cabo los ensayos de análisis granulométrico, límites de Atterberg y Próctor modificado. Posteriomente se llevó a cabo el diseño para cada muestra, para lo cual se compactaron 6 especímenes por punto de dosificación con cal y 6 especímenes por punto de dosificación con cemento, y de esta forma determinar sí era factible la estabilización con alguno de los dos agentes, en ambos casos el ensayo se realizó en condición de humedad óptima. Al utilizar cemento los especímenes fueron curados durante 7 días en la cámara húmeda, y para los especímenes con cal se curaron por 7 día envueltos con papel adhesivo, para luego ser saturados por capilaridad. Para esto último, los especímenes se colocaron sobre una cama de oasis cubiertos de agua, donde las muestras se envolvieron en paños absorventes para que se saturarn mediante capilaridad duante 24 horas.

Finalmente, se fallaron para obtener el esfuerzo a compresión inconfinada.

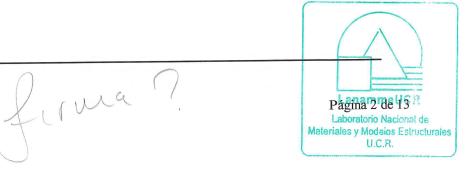


Tabla Nº 1: Resultados del análisis granulométricos Muestra: 339-17

Tar	miz	Masa	Porcentaje	Porcentaje	Porcentaje
Pulg.	mm.	Retenido	Retenido (%)	Retenido acumulado (%)	Pasando (%)
1 1/2"	37,5	377,4	3,8	3,8	96,2
1"	25	312,7	3,2	7,0	93,0
3/4"	19,0	321,1	3,2	10,2	89,8
1/2"	12,50	762,8	7,7	17,9	82,1
3/8"	9,50	529,0	5,3	23,3	76,7
1/4"	6,30	930,7	9,4	32,7	67,3
Nº 4	4,75	537,3	5,4	38,1	61,9
Nº 8	2,36	1184,3	12,0	50,1	49,9
Nº 16	1,18	674,2	6,8	59,2	40,8
Nº 30	0,60	643,6	6,5	65,7	34,3
Nº 40	0,43	269,5	2,7	68,4	31,6
Nº 50	0,30	255,8	2,6	71,0	29,0
Nº 100	0,15	475,5	4,8	75,8	24,2
Nº 200	0,075	539,0	5,4	81,3	18,7
Cha	rola	100,6	18,7	100,0	
Lavado pas	ando Nº200	0,0	100,0		
Tota	ales	9898,4	200,0		

Gráfica Nº 1: Granulometría del material ensayado Muestra: 339-17

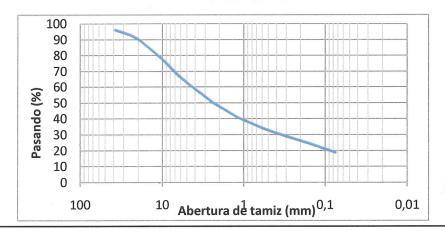


Tabla Nº 2: Resultados del análisis granulométricos Muestra: 340-17

Tai	miz	Masa	Porcentaje	Porcentaje	Porcentaje
Pulg.	mm.	Retenido	Retenido (%)	Retenido acumulado (%)	Pasando (%)
1 1/2"	37,5	547,4	6,4	6,4	93,6
1"	25	108,2	1,3	7,6	92,4
3/4"	19,0	281,9	3,3	10,9	89,1
1/2"	12,50	261,0	3,0	13,9	86,1
3/8"	9,50	124,0	1,4	15,4	84,6
1/4"	6,30	139,3	1,6	17,0	83,0
Nº 4	4,75	443,7	5,2	22,2	77,8
Nº 8	2,36	853,0	9,9	32,1	67,9
Nº 16	1,18	491,3	5,7	40,7	59,3
Nº 30	0,60	331,3	3,9	44,5	55,5
Nº 40	0,43	432,5	5,0	49,6	50,4
Nº 50	0,30	591,7	6,9	56,5	43,5
Nº 100	0,15	351,6	4,1	60,5	39,5
Nº 200	0,075	467,7	5,4	66,0	34,0
Cha	rola	250,8	34,0	100,0	
Lavado pas	ando Nº200	2674,8	100,0	4,51	
Tota	ales	8600,6	200,0		

Gráfica Nº 2: Granulometría del material ensayado Muestra: 340-17

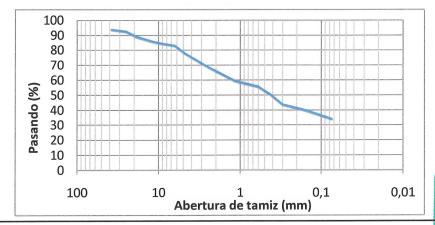
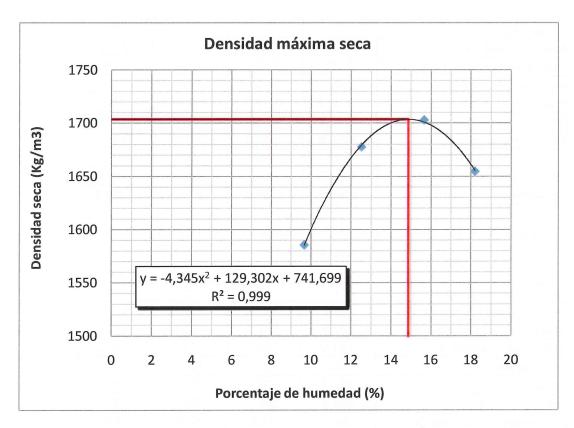


Tabla N^{o} 3: Resultados de densidad máxima seca del ensayo del próctor modificado Muestra: 339-17

Ensayo No.	1	2	3	4
Masa de muestra seca	2000	2000	2000	2000
Porcentaje agua adicionado (%)	5,0%	7,5%	2,5%	0,0%
Masa de agua adicionada (g)	100	150	50	0
Masa húmeda + molde (g)	6012,9	6000,0	5935,9	5795,7
Masa del molde, (g)	4158,0	4158,0	4158,0	4158,0
Masa húmeda, (g)	1854,9	1842,0	1777,9	1637,7
Volumen del molde, (cm ³)	942	942	942	942
Densidad húmeda, (Kg/m³)	1969,7	1956,0	1887,9	1739,1
Densidad seca, (Kg/m³)	1702,9	1654,8	1677,7	1585,9

Tabla Nº 4: Resultados de humedad óptima en el material analizado Muestra: 339-17


Identificación de bandeja	1	2	3	4
Porcentaje agua adicionado (%)	5,0%	7,5%	2,5%	0,0%
Masa húmedad + bandeja (g)	887,9	825,0	855,5	896,4
Masa seca + bandeja (g)	783,9	716,6	773,7	828,2
Masa bandeja (g)	120,5	121,1	120,9	121,7
Masa de agua (g)	103,9	108,4	81,8	68,2
Masa de seca (g)	663,4	595,5	652,8	706,5
Porcentaje de humedad (%)	15,7	18,2	12,5	9,7

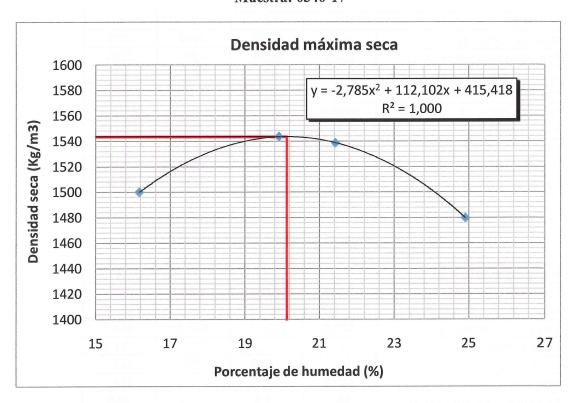
Gráfica Nº 3: Relación densidad - humedad del material Muestra: 339-17

Densidad máxima seca:	1703,7	Kg/m ³
Porcentaje óptimo humedad:	14,9	%
Método	"C"	
No.Capas	5	
No.Golpes/ capa	25	
Molde	4"	
Limite líquido (LL):	39	
Limite plástico (LP):	28	
Índice plasticidad (IP):	11	

Tabla Nº 5: Resultados de densidad máxima seca del ensayo del próctor modificado Muestra: 0340-17

Ensayo No.	1	2	3	4
Masa de muestra seca	2000	2000	2000	2000
Porcentaje agua adicionado (%)	0,0%	8,0%	4,0%	2,0%
Masa de agua adicionada (g)	0	160	80	40
Masa húmeda + molde (g)	5799,0	5901,1	5917,5	5898,7
Masa del molde, (g)	4158,0	4158,0	4158,0	4158,0
Masa húmeda, (g)	1641,0	1743,1	1759,5	1740,7
Volumen del molde, (cm³)	941,720	941,720	941,720	941,720
Densidad húmeda, (Kg/m³)	1743	1851	1868	1848
Densidad seca, (Kg/m³)	1500	1544	1539	1480

Tabla N^{o} 6: Resultados de humedad óptima en el material analizado Muestra: 0340-17


Identificación de bandeja	1	2	3	4
Porcentaje agua adicionado (%)	0,0%	8,0%	4,0%	2,0%
Masa húmedad + bandeja (g)	711,0	839,3	744,3	791,8
Masa seca + bandeja (g)	628,9	720,1	634,5	658,1
Masa bandeja (g)	121,1	121,4	122,0	121,4
Masa de agua (g)	82,1	119,2	109,8	133,7
Masa de seca (g)	507,8	598,7	512,5	536,7
Porcentaje de humedad (%)	16,2	19,9	21,4	24,9

Gráfica Nº 4: Relación densidad - humedad del material Muestra: 0340-17

Densidad máxima seca:	1544	Kg/m³
Porcentaje óptimo humedad:	20,1	%
Densidad humeda:	1854	Kg/m ³
METODOLOGIA	"C"	_
No.Capas	5	_
No.Golpes/ capa	25	_
Molde	4"	_
Limite líquido (LL):	64	
Limite plástico (LP):	35	
Índice plasticidad (IP):	29	

Tabla Nº 6: Resultados de densidad y compactación Muestra: 339-17 Diseño de estabilización con cal

Porcentaje de cal dosificado	0,80%		1,80%		2,80%	
Masa del molde (g)	4158,0	4158,0	4158,0	4158,0	4158,0	4158,0
Masa molde + suelo húmedo (g)	5994,1	5988,6	5972,0	5953,1	5948,0	5970,1
Masa de suelo humedo (g)	1836,1	1830,6	1814,0	1795,1	1790,0	1812,1
Volumen del molde (cm3)	941,7	941,7	941,7	941,7	941,7	941,7
Densidad seca real (kg/m3)	1692,1	1673,9	1676,9	1653,6	1651,3	1675,2
Humedad especímen (%)	15,0	15,9	14,7	15,1	14,9	14,7
Porcentaje de compactación (%)	99,3	98,3	98,4	97,1	96,9	98,3

Tabla Nº 7: Resultados de humedad óptima en el material analizado Muestra: 339-17 Diseño de estabilización con cal

Porcentaje de cal dosificado	0,80%		1,8	0%	2,80%	
Cápsula #	10,0	11,0	15,0	29,0	31,0	47,0
Peso de capsula (g)	120,0	120,5	120,4	120,9	120,9	121,4
Peso cápsula+muestra húmeda (g)	915,7	931,0	943,7	946,8	925,8	926,5
Peso cápsula+muestra seca (g)	811,8	819,7	838,4	838,6	821,4	823,5
Humedad de muestra (%)	15,0	15,9	14,7	15,1	14,9	14,7

Tabla Nº 7: Resultados de la falla de especímenes Muestra: 339-17 Diseño de estabilización con cal

Item	Porcentje de dosificación de cal						
	0,8	0%	1,8	0%	2,8	0%	
Altura promedio (mm)	116,4	116,7	116,7	117,1	117,1	117,5	
Diámetro promedio (mm)	101,7	101,7	101,7	101,7	101,7	101,7	
Área transversal (cm²)	81,2	81,2	81,3	81,3	81,2	81,2	
Relación Altura/Diámetro (L/D)	1,14	1,15	1,15	1,15	1,15	1,16	
Carga máxima (kN)	7,7	6,8	17,8	14,0	22,9	26,5	
Esfuerzo máximo (kPa)	948,0	837,2	2190,2	1722,4	2818,7	3263,3	
Esfuerzo máximo (kgf/cm²)	9,7	8,5	22,3	17,6	28,7	33,3	

Tabla Nº 6: Resultados de densidad y compactación Muestra: 339-17 Diseño de estabilización con cemento

Porcentaje de cal dosificado	2,50%		3,00%		3,50%	
Masa del molde (g)	4158,0	4158,0	4158,0	4158,0	4158,0	4158,0
Masa molde + suelo húmedo (g)	5918,8	6024,7	6027,4	6032,8	6038,3	6037,3
Masa de suelo humedo (g)	1760,8	1866,7	1869,4	1874,8	1880,3	1879,3
Volumen del molde (cm3)	941,7	941,7	941,7	941,7	941,7	941,7
Densidad seca real (kg/m3)	1639,0	1722,1	1726,6	1720,4	1750,5	1726,7
Humedad especímen (%)	13,9	14,9	14,8	15,5	13,9	15,4
Porcentaje de compactación (%)	95,2	100,0	100,3	99,9	101,6	100,3

Tabla Nº 7: Resultados de humedad óptima en el material analizado Muestra: 339-17 Diseño de estabilización con cemento

Porcentaje de cemento dosificado	2,50%		3,0	0%	3,50%		
Cápsula #	15,0	24,0	29,0	16,0	33,0	37,0	
Peso de capsula (g)	120,5	121,1	120,9	121,1	121,4	121,7	
Peso cápsula+muestra húmeda (g)	803,3	876,1	833,5	827,8	821,2	793,3	
Peso cápsula+muestra seca (g)	720,1	778,2	741,9	732,9	736,0	703,8	
Humedad de muestra (%)	13,9	14,9	14,8	15,5	13,9	15,4	

Tabla Nº 7: Resultados de la falla de especímenes Muestra: 339-17 Diseño de estabilización con cemento

Item	Porcentje de dosificación de cemento						
item	2,5	0%	3,0	0%	3,5	0%	
Altura promedio (mm)	102,2 102,0		102,0	101,9	102,0	102,1	
Diámetro promedio (mm)	117,3	117,4	117,1	117,4	117,4	117,7	
Área transversal (cm²)	82,0	81,7	81,7	81,6	81,7	81,8	
Relación Altura/Diámetro (L/D)	1,15	1,15	1,15	1,15	1,15	1,15	
Carga máxima (kN)	13,6	20,5	22,7	25,6	31,0	24,8	
Esfuerzo máximo (kPa)	1659,3	2509,6	2779,5	3136,4	3792,8	3031,1	
Esfuerzo máximo (kgf/cm²)	16,9	25,6	28,3	32,0	38,7	30,9	

Tabla Nº 6: Resultados de densidad y compactación Muestra: 340-17 Diseño de estabilización con cal

Porcentaje de cal dosificado	0,80%		1,8	1,80%		2,80%	
Masa del molde (g)	4158,0	4158,0	4158,0	4158,0	4158,0	4158,0	
Masa molde + suelo húmedo (g)	5893,9	5889,1	5846,5	5851,3	5834,2	5828,6	
Masa de suelo humedo (g)	1735,9	1731,1	1688,5	1693,3	1676,2	1670,6	
Volumen del molde (cm3)	941,7	941,7	941,7	941,7	941,7	941,7	
Densidad seca real (kg/m3)	1532,2	1505,6	1480,3	1488,4	1474,3	1467,2	
Humedad especímen (%)	20,1	21,9	20,9	20,6	20,5	20,7	
Porcentaje de compactación (%)	99,3	97,5	95,9	96,4	95,5	95,1	

Tabla Nº 7: Resultados de humedad óptima en el material analizado Muestra: 340-17 Diseño de estabilización con cal

Porcentaje de cal dosificado	0,80%		1,8	0%	2,80%	
Cápsula #	15,0	16,0	24,0	29,0	33,0	37,0
Peso de capsula (g)	117,7	120,6	121,7	122,0	121,9	122,5
Peso cápsula+muestra húmeda (g)	796,6	768,1	779,8	839,3	843,1	765,0
Peso cápsula+muestra seca (g)	683,1	651,8	666,0	716,8	720,3	654,8
Humedad de muestra (%)	20,1	21,9	20,9	20,6	20,5	20,7

Tabla Nº 7: Resultados de la falla de especímenes Muestra: 340-17 Diseño de estabilización con cal

Item		Porcentje de dosificación de cal						
Item	0,8	0,80%		0%	2,80%			
Altura promedio (mm)	102,3	102,7	102,1	101,8	101,8	101,7		
Diámetro promedio (mm)	117,6	118,5	117,9	117,3	117,3	117,3		
Área transversal (cm²)	82,3	82,9	81,8	81,4	81,5	81,2		
Relación Altura/Diámetro (L/D)	1,15	1,15	1,16	1,15	1,15	1,15		
Carga máxima (kN)	3,1	3,0	7,6	7,8	12,8	11,6		
Esfuerzo máximo (kPa)	376,9	361,9	929,2	957,7	1571,3	1427,8		
Esfuerzo máximo (kgf/cm²)	3,8	3,7	9,5	9,8	16,0	14,6		

Tabla Nº 6: Resultados de densidad y compactación Muestra: 340-17 Diseño de estabilización con cemento

Porcentaje de cemento dosificado	2,50%		3,00%		3,50%			
Masa del molde (g)	4158,0	4158,0	4158,0	4158,0	4158,0	4158,0		
Masa molde + suelo húmedo (g)	5932,3	5923,9	5918,0	5908,7	5925,4	5926,6		
Masa de suelo humedo (g)	1774,3	1765,9	1760,0	1750,7	1767,4	1768,6		
Volumen del molde (cm3)	941,7	941,7	941,7	941,7	941,7	941,7		
Densidad seca real (kg/m3)	1542,9	1544,0	1534,2	1524,0	1545,6	1543,8		
Humedad especímen (%)	21,9	21,2	21,6	21,8	21,2	21,4		
Porcentaje de compactación (%)	100,0	100,0	99,4	98,7	100,1	100,0		

Tabla Nº 7: Resultados de humedad óptima en el material analizado Muestra: 340-17 Diseño de estabilización con cemento

Porcentaje de cemento dosificado	2,50%		3,00%		3,50%	
Cápsula #	15,0	16,0	24,0	29,0	33,0	37,0
Peso de capsula (g)	120,5	121,1	121,1	120,9	121,4	121,7
Peso cápsula+muestra húmeda (g)	766,9	768,1	744,6	705,9	747,7	738,1
Peso cápsula+muestra seca (g)	650,8	654,8	633,9	601,3	638,1	629,3
Humedad de muestra (%)	21,9	21,2	21,6	21,8	21,2	21,4

Tabla Nº 7: Resultados de la falla de especímenes Muestra: 340-17 Diseño de estabilización con cemento

Item Altura promedio (mm)	Porcentje de dosificación de cemento							
	2,50%		3,00%		3,50%			
	101,5	101,7	101,8	101,8	101,8	101,9		
Diámetro promedio (mm)	117,2	118,2	117,4	117,4	117,4	117,2		
Área transversal (cm²)	80,9	81,3	81,4	81,4	81,3	81,5		
Relación Altura/Diámetro (L/D)	1,15	1,16	1,15	1,15	1,15	1,15		
Carga máxima (kN)	11,0	6,9	10,9	14,0	15,1	15,4		
Esfuerzo máximo (kPa)	1359,5	849,0	1338,7	1720,7	1856,9	1889,8		
Esfuerzo máximo (kgf/cm²)	13,9	8,7	13,7	17,5	18,9	19,3		

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Preparó:

Ing. Andrea Ulloa Calderón Jefe Laboratorio de Mezclas

Bituminosas

Revisó:

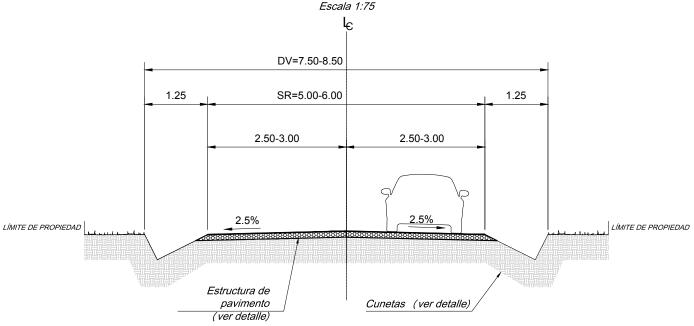
Ing. Fabián Elizondo Arrieta, MBA

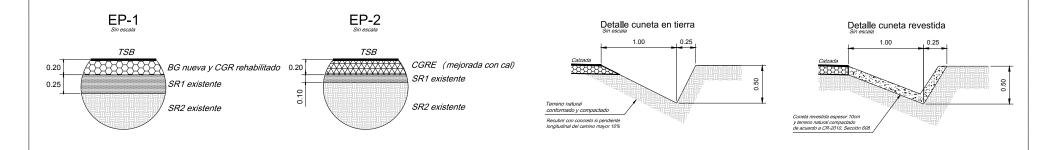
Infraestructura Vial

Coordinador Laboratorios de

Aprobó:

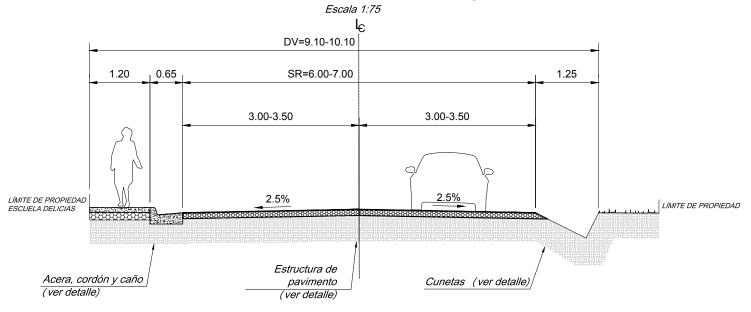
Ing. Alejandro Navas Carro, M.Sc.

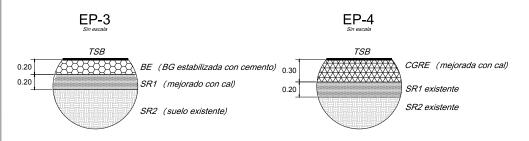

Director LanammeUCR

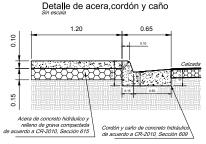

Página 13 de 13 LanammeUCR

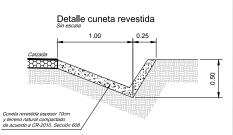
Laboratorio Nacional de Materiales y Modelos Estructurales U.C.R.

Camino Montezuma 6-01-128


Tramo 500 m según ubicación en mapa de informe LM-PI-GM-INF-05-2017


Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas

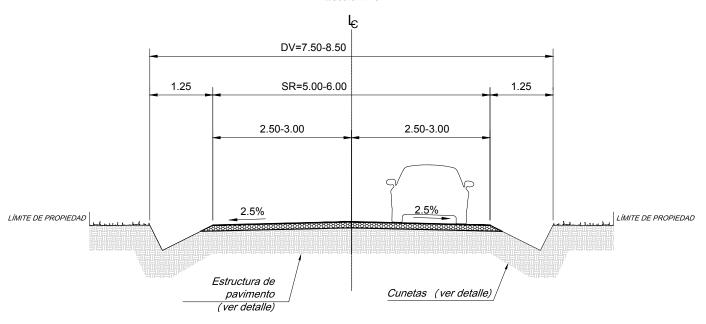


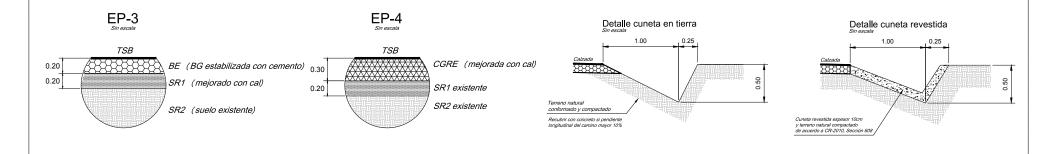

Universidad de Costa Rica

Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)

Camino Delicias 6-01-038

De: Escuela Delicias A: Ent C6-01-128 (tramo 750 m frente a Escuela)


Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas



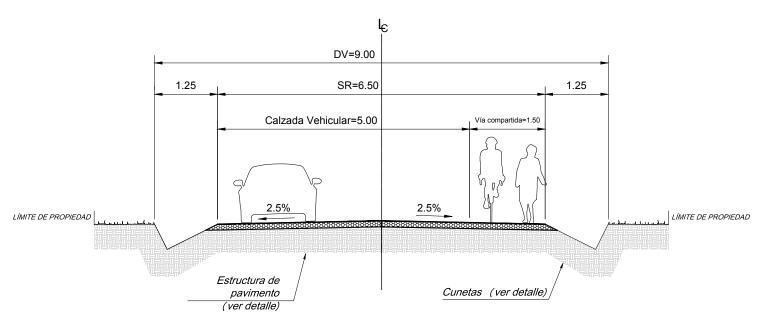
Universidad de Costa Rica

Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)

Escala 1:75

Camino Delicias 6-01-038

De: Ent C6-01-128 A: Plaza Futbol Delicias (tramo 1.75 km)


Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas

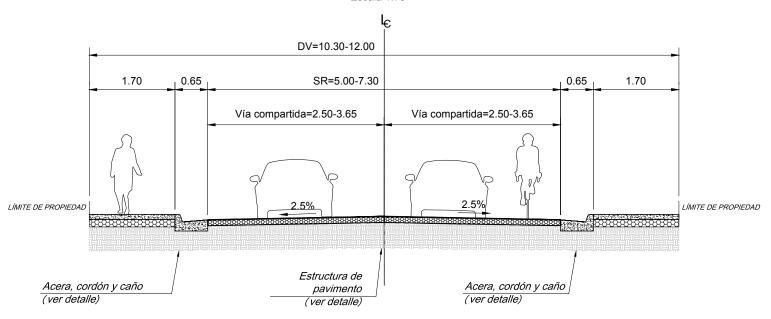
Universidad de Costa Rica

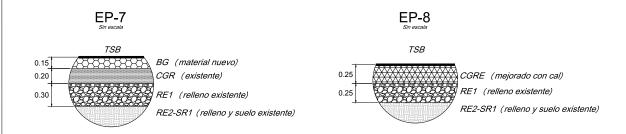
Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)

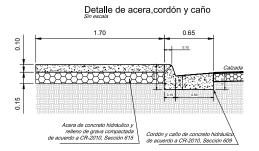
Escala 1:75

CaminoSanta Teresa 6-01-001

Tramo 1 De: Escuela Malpaís A:Playa Malpaís (800m) Tramo 2 De:Playa Mar Azul A: Blue Jay Lodge (1.4km)


Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas



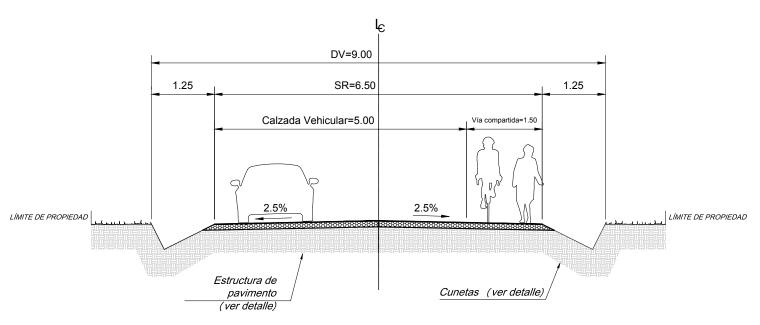

Universidad de Costa Rica

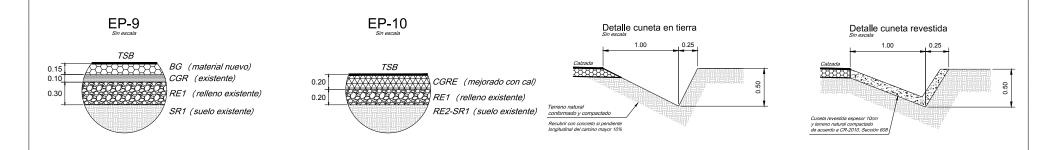
Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)

Escala 1:75

Camino Santa Teresa 6-01-001

Tramo 3 De: Int. Playa Carmen A: El Peñon (4.6km)


Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas

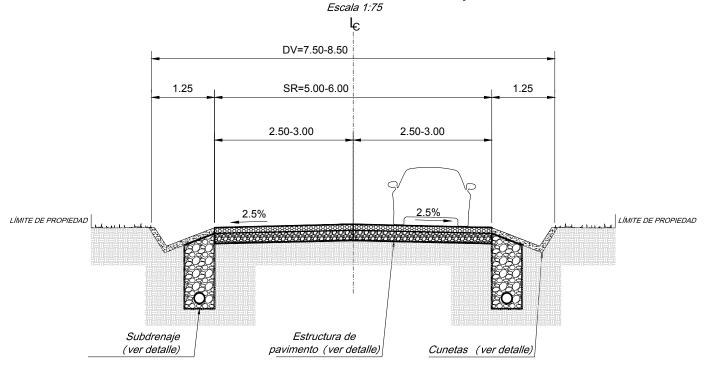


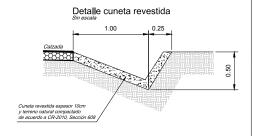
Universidad de Costa Rica

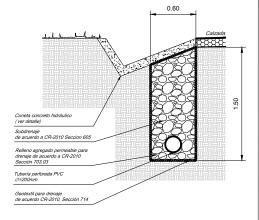
Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)

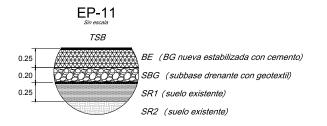
Escala 1:75

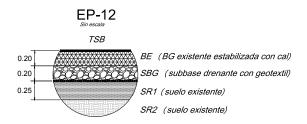
CaminoSanta Teresa 6-01-001


Tramo 4 De: Escuela Hermosa Valley A:Playa Cocal Grande (800m)

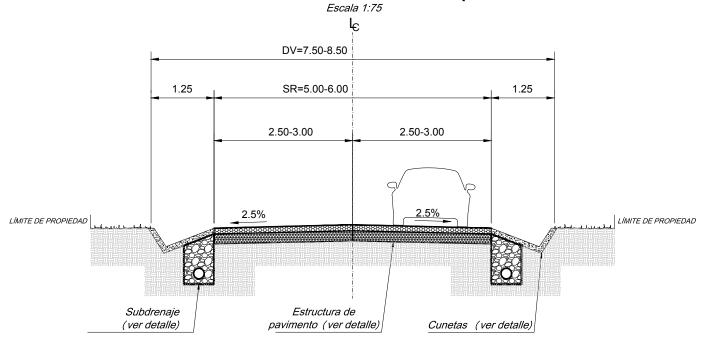

Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas

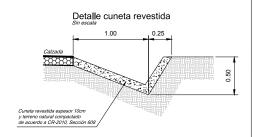


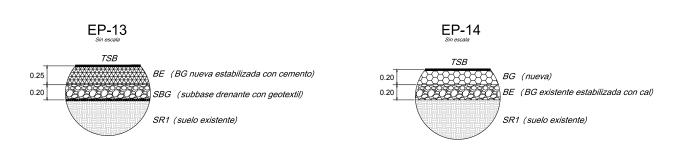

Universidad de Costa Rica

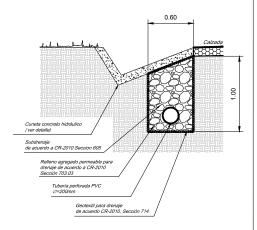

Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)

Camino San Isidro 6-01-037


Tramo pendiente inestable 150m (S8)


Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas




Universidad de Costa Rica

Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)

Camino San Isidro 6-01-037

Otras zonas con deformaciones (S9 y S10)

Distrito: Cobano Cantón: Puntarenas Provincia: Puntarenas

Universidad de Costa Rica

Laboratorio Nacional de Materiales y Modelos Estructurales Programa de Infraestructura del Transporte (PITRA) Unidad de Gestión Municipal (UGM)