Ing. Pedro Luis Castro Fernández, Ph.D.
Ministro
Ministerio de Obras Públicas y Transportes

Estimado señor Ministro:

En respuesta a su atento oficio DMOPT-1119-13 (3) de fecha 8 de marzo del 2013, mediante el cual nos solicita la colaboración para realizar muestreos aleatorios en las plantas productoras de mezcla asfáltica, me permito manifestarle lo siguiente:

El LanammeUCR, a través del Programa de Infraestructura de Transporte PITRA y específicamente a través de la Unidad de Auditoría Técnica, ha procedido a intensificar sus muestreos establecidos en su plan anual de trabajo para la mezcla asfáltica producida en las plantas de producción que suministran dicho material a los proyectos de Conservación Vial.

Motivo de lo anterior y ante la imperante necesidad de la Administración de corroborar el cumplimiento de los requisitos de calidad de la mezcla asfáltica por la ausencia de verificación de calidad, me permito remitirle los informes de ensayo con los resultados de 12 ensayos de contenido de asfalto, 12 ensayos de granulometría y 3 ensayos de parámetros Marshall que el Lanamme ha realizado como parte de esta labor de fiscalización. De manera general, a partir del análisis de los resultados de calidad de las mezclas asfálticas analizadas, se puede determinar lo siguiente:

<table>
<thead>
<tr>
<th>Planta</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conansa</td>
<td>No se observan incumplimientos.</td>
</tr>
<tr>
<td>HS Abangares</td>
<td>Una de las muestras presenta un contenido de asfalto superior a las tolerancias permitidas por el diseño.</td>
</tr>
<tr>
<td>Meco, La Uruca</td>
<td>Presenta alta variabilidad en el contenido de vacíos además incumplimientos en propiedades volumétricas en todas las muestras analizadas (vacíos, VMA y VFA). Los valores de relación polvo-asfalto también presentan incumplimientos en las 3 muestras analizadas.</td>
</tr>
<tr>
<td>Grupo Orosi</td>
<td>Una de las muestras presenta incumplimiento en los parámetros volumétricos. Adicionalmente dos muestras presentan incumplimiento en la relación polvo asfalto. Todos las muestras analizadas presentan un alto contenido de asfalto.</td>
</tr>
</tbody>
</table>
Laboratorio Nacional de Materiales y Modelos Estructurales

Hernán Solís Guápiles
Se observa un bajo contenido de vacíos (1.6%), un alto contenido de asfalto (6.8%) lo que incide en el VFA. Además se observa un incumplimiento en la relación polvo asfalto que está ligado al valor alto de agregado que pasa la malla 200 (7.9%).

Meco Guápiles
Se observan incumplimientos en la relación polvo asfalto y en el VFA en todas las muestras analizadas.

A continuación se resumen las características generales de calidad de la muestras de mezcla asfáltica producida durante el mes de marzo de 2013.

<table>
<thead>
<tr>
<th>Informe</th>
<th>Muestra</th>
<th>Planta</th>
<th>Fecha de producción</th>
<th>Contenido de Vacíos [%]</th>
<th>VMA [%]</th>
<th>VFA [%]</th>
<th>% asfalto</th>
<th>% pasando Malla 200</th>
<th>Relación Polvo Asfalto</th>
<th>Contenido de Asfalto (Óptimo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-0430-13</td>
<td>M-0668-13</td>
<td>Conansi</td>
<td>05/04/2013</td>
<td>4.2</td>
<td>15.7</td>
<td>73.4</td>
<td>*</td>
<td>*</td>
<td>1.24</td>
<td>5.02-6.02</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0683-13</td>
<td>Conansi</td>
<td>05/04/2013</td>
<td>4.6</td>
<td>15.8</td>
<td>70.8</td>
<td>5.9</td>
<td>3.4</td>
<td>1.17</td>
<td>5.8-6.8</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0846-13</td>
<td>Conansi</td>
<td>17/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5.6</td>
<td>6</td>
<td>*</td>
<td>5.4-6.8</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0809-13</td>
<td>HS Abangares</td>
<td>08/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6.3</td>
<td>6.3</td>
<td>*</td>
<td>4.8-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0660-13</td>
<td>HS Abangares</td>
<td>08/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6.9</td>
<td>6.9</td>
<td>*</td>
<td>4.8-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0807-13</td>
<td>HS Abangares</td>
<td>09/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>6.8</td>
<td>6.8</td>
<td>*</td>
<td>4.8-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0658-13</td>
<td>Meco Urubia</td>
<td>04/04/2013</td>
<td>3.5</td>
<td>12.3</td>
<td>76</td>
<td>*</td>
<td>*</td>
<td>1.43</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0731-13</td>
<td>Meco Urubia</td>
<td>09/04/2013</td>
<td>3.1</td>
<td>13.5</td>
<td>74.9</td>
<td>3.6</td>
<td>6</td>
<td>1.48</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0737-13</td>
<td>Meco Urubia</td>
<td>08/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5.6</td>
<td>6.1</td>
<td>*</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0669-13</td>
<td>Orosi</td>
<td>03/04/2013</td>
<td>5.1</td>
<td>12.6</td>
<td>60.7</td>
<td>*</td>
<td>*</td>
<td>1.66</td>
<td>5.02-6.02</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0730-13</td>
<td>Orosi</td>
<td>02/04/2013</td>
<td>3.8</td>
<td>14.7</td>
<td>73</td>
<td>3.7</td>
<td>6.1</td>
<td>*</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0737-13</td>
<td>Orosi</td>
<td>03/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>5.4</td>
<td>6.2</td>
<td>*</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0430-13</td>
<td>M-0738-13</td>
<td>Orosi</td>
<td>11/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>4.9</td>
<td>6.2</td>
<td>*</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0751-13</td>
<td>Orosi</td>
<td>09/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>4.9</td>
<td>6.2</td>
<td>*</td>
<td>5.2-6.2</td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0797-13</td>
<td>Orosi</td>
<td>10/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>4.9</td>
<td>6.2</td>
<td>*</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0861-13</td>
<td>Orosi</td>
<td>22/04/2013</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>4.9</td>
<td>6.2</td>
<td>*</td>
<td>4.85-5.85</td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0651-13 Pista Guápiles</td>
<td>19/03/2013</td>
<td>5.2</td>
<td>14.9</td>
<td>76.7</td>
<td>*</td>
<td>*</td>
<td>1.38</td>
<td>4.85-5.85</td>
<td></td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0651-13 Pista Guápiles</td>
<td>20/03/2013</td>
<td>3.3</td>
<td>14.7</td>
<td>77.5</td>
<td>*</td>
<td>*</td>
<td>1.45</td>
<td>4.85-5.85</td>
<td></td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0651-13 Pista Guápiles</td>
<td>21/03/2013</td>
<td>2.7</td>
<td>14.7</td>
<td>81.8</td>
<td>*</td>
<td>*</td>
<td>1.38</td>
<td>4.85-5.85</td>
<td></td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0651-13 Pista Mecho Guápiles</td>
<td>19/03/2013</td>
<td>4.8</td>
<td>15.9</td>
<td>69.7</td>
<td>*</td>
<td>*</td>
<td>1.05</td>
<td>4.85-5.85</td>
<td></td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0651-13 Pista Mecho Guápiles</td>
<td>20/03/2013</td>
<td>3.8</td>
<td>15.6</td>
<td>71.7</td>
<td>*</td>
<td>*</td>
<td>1.22</td>
<td>4.85-5.85</td>
<td></td>
</tr>
<tr>
<td>I-0651-13</td>
<td>M-0651-13 Pista Mecho Guápiles</td>
<td>19/03/2013</td>
<td>3.2</td>
<td>15.2</td>
<td>76.7</td>
<td>*</td>
<td>*</td>
<td>1.13</td>
<td>4.85-5.85</td>
<td></td>
</tr>
</tbody>
</table>

*Muestras en proceso

Los datos resaltados en color rojo presentan incumplimiento según disposición Vial AM-01-2009

También le comunicó que al día de hoy, se han entregado 68 muestras de mezcla asfáltica (muestras espejo) al Laboratorio de Geotecnia y Materiales de la Dirección de Ingeniería del MOPT, en cumplimiento al compromiso manifestado en el oficio LM-PI-048-2013. En el siguiente cuadro se detallan la cantidad de muestras por planta que se han entregado a la fecha:
<table>
<thead>
<tr>
<th>Plantas</th>
<th>Muestras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hs</td>
<td>11</td>
</tr>
<tr>
<td>Abangares</td>
<td></td>
</tr>
<tr>
<td>Hs Guápiles</td>
<td>5</td>
</tr>
<tr>
<td>Meco</td>
<td></td>
</tr>
<tr>
<td>Guápiles</td>
<td>5</td>
</tr>
<tr>
<td>Conansa</td>
<td>10</td>
</tr>
<tr>
<td>Meco Uruca</td>
<td>16</td>
</tr>
<tr>
<td>Grupo Orosí</td>
<td>14</td>
</tr>
<tr>
<td>Hs Rio Claro</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
</tr>
</tbody>
</table>

Es importante aclarar que la toma de muestras de mezcla asfáltica en la planta de producción por parte de la Auditoría Técnica dentro del proceso de fiscalización, no tiene como finalidad cumplir la función del autocontrol ni la verificación de calidad, por lo que la información aportada no constituye un dictamen final de la calidad, sino un insumo para que la Administración analice los resultados obtenidos por el LanammeUCR y tenga una referencia en el orden de magnitud de los parámetros analizados.

Sin más por el momento se despedirá su servidor,

Ing. Alejandro Navas Carro, MSc.
Director LanammeUCR

cc:
Ing. Carlos Solís Munilo, Director Ejecutivo a.i. CONAVI
Ing. Christian Vargas Calvo, Gerencia de Conservación de Vías y Puentes CONAVI
Ing. Dahianna Izaguirre, Dirección Ejecutiva CONAVI
Ing. Luis Guillermo Loria Salar, Ph.D., Coordinador General-PITRA

JCH/FF/VC
Informe de ensayo

Informe Final

ST-0264-13
ST-0292-13
ST-0295-13
ST-0296-13
ST-0332-13
ST-0333-13

1. Información del cliente:
Nombre: Unidad de Auditoria Técnica
Ing. Víctor Cervantes

Proyecto: Verificación de propiedades de mezcla asfáltica de planta.

2. Método de ensayo:
IT-MB-03 (AASHTO T245/ ASTM D 6927) (*). Resistencia al flujo plástico en especímenes compactados con el método Marshall.
IT-MB-04 (AASHTO T 245/ ASTM D 6926) (*). Procedimiento de mezclado y compactación mediante el método Marshall.
IT-MB-06 (AASHTO T 269/ASTM D 3203) (*). Determinación del porcentaje de vacíos de aire de mezclas bituminosas densas o abiertas compactadas.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:
No. de identificación: 608-13

Descripción: 4 Cajas de mezcla asfáltica con polímero de la planta de Hernán Solis. Temperatura: 151.2 Temperatura ambiente: 84.
No. de informe: I-0405-13

Humedad: 84%. Vagoneta #15, placa 146026, destino República San Luis, Ruta 32
4 Cajas de mezcla asfáltica con polímero de la planta de Hernán Solís. Temperatura: 149.1. Temperatura ambiente: 22.4. Humedad: 80%. Vagoneta #15, placa 146026, destino República San Luis, Ruta 32

609-13
4 Cajas de mezcla asfáltica de la planta de MECO, Temperatura: 159.6. Temperatura ambiente: 30.6. Humedad: 58%. Vagoneta #13, placa 149108, destino Puerto Viejo, Ruta 36

610-13
4 Cajas de mezcla asfáltica de la planta de MECO, Temperatura: 160.9. Temperatura ambiente: 26.9. Humedad: 69%. Vagoneta #14, placa 145105, destino Río Sucio, Ruta 32

611-13
4 Cajas de mezcla asfáltica de la planta de MECO Guápiles. Vagoneta #2, placa 149108, Destino Venecia, Ruta 32. Para Bacneco. Temperatura: 168.0° C

652-13
4 Cajas de mezcla asfáltica con polímero de la planta de Hernán Solís. Guápiles. Vagoneta #11, placa 159243, Destino República San Luis, Ruta 32. Temperatura: 171.9° C

653-13

Aportadas por:
(en orden de muestreo)

Procedimiento:

La mezcla asfáltica suministrada en una caja fue cuarteada para la conformación de los especímenes de ensayo.

En el laboratorio de mezclas bituminosas se compactaron tres especímenes a las temperaturas indicadas por el cliente para cada muestra, con las siguientes cantidades de mezcla asfáltica: 1150g, 1175g y 1200g con el mazo Marshall a 75 golpes por ambas caras, que determinará cuanto se requerirá para obtener la altura requerida. Se cuartearon además dos especímenes de mezcla asfáltica de cada muestra para obtener la gravedad máxima teórica.

Una vez compactadas las pastillas se procedió a realizar las pruebas de gravedad específica bruta.

Así mismo, se llevó a cabo el ensayo de gravedad máxima teórica para cada una de las muestras de mezcla asfáltica, y así obtener el porcentaje de vacíos de los especímenes.

Por lo que se procedió luego a compactar los cuatro especímenes requeridos de cada muestra para a la
realización del ensayo de resistencia al flujo plástico.

Para el ensayo de resistencia al flujo los especímenes fueron sometidos por 30 min en un baño a 60ºC y posteriormente fallados para la obtención de la resistencia y deformación máxima.

Fecha de recepción:
(en orden de muestreo)
- 2013-03-20
- 2013-03-20
- 2013-03-20
- 2013-03-20
- 2013-03-22
- 2013-03-22
- 2013-04-01 al 2013-04-25

Fecha de realización del ensayo:

4. Información del muestreo:

Fecha de muestreo:
(en orden de muestreo)
- 2013-03-19
- 2013-03-20
- 2013-03-19
- 2013-03-20
- 2013-03-21
- 2013-03-21

Ubicación:
(en orden de muestreo)
Planta Hernán Solis, Guápiles
Planta Hernán Solis, Guápiles
Planta MECO, Guápiles
Planta MECO, Guápiles
Planta MECO, Guápiles
Planta Hernán Solis, Guápiles

Procedimiento de muestreo:
Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales:
(en orden de muestreo)
Despejado
Despejado
Despejado
Despejado
Temperatura ambiente: 36.7 ºC. 60% de Humedad
Temperatura ambiente: 23.3 ºC. 78% de Humedad
No. de informe: 1-0405-13

Tabla N° 1: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall

Muestra: 608-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (1*)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica máxima teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.401</td>
<td>63.3</td>
<td>0.5</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.398</td>
<td>63.3</td>
<td>0.3</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.391</td>
<td>63.3</td>
<td>0.3</td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.401</td>
<td>63.2</td>
<td>0.3</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.398</td>
<td>63.4</td>
<td>0.3</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio

Tabla N° 2: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall

Muestra: 608-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (1*)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1642</td>
<td>1.04</td>
<td>1.708</td>
<td>27.0</td>
<td>14.8</td>
<td>79.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1791</td>
<td>1.04</td>
<td>1.863</td>
<td>29.3</td>
<td>14.9</td>
<td>78.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1787</td>
<td>1.04</td>
<td>1.859</td>
<td>29.0</td>
<td>15.1</td>
<td>77.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1611</td>
<td>1.04</td>
<td>1.712</td>
<td>27.3</td>
<td>14.8</td>
<td>79.5</td>
<td></td>
</tr>
<tr>
<td>Promedios</td>
<td>1683</td>
<td>1.04</td>
<td>1.750</td>
<td>28.2</td>
<td>14.9</td>
<td>78.7</td>
<td></td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>134</td>
<td>0.00</td>
<td>139</td>
<td>1.2</td>
<td>0.2</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio
No. de informe: I-0405-13

Tabla N° 3: Resumen de los resultados para especímenes compactados mediante el método Marshall
Muestra: 608-13 RESUMEN

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (1)</td>
<td>1.035</td>
<td>kg/m³</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (2)</td>
<td>2.656</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (1)</td>
<td>-</td>
<td>%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (3)</td>
<td>5.7 ± 0.2</td>
<td>%</td>
<td>Cumple</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>5.6 ± 0.1</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2.398 ± 0.006</td>
<td>-</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2.475</td>
<td>-</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Vacíos</td>
<td>3.2 ± 0.2</td>
<td>3-5</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>1750 ± 139</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>28.2 ± 1.2</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>63.4 ± 0.3</td>
<td>63.5±1.27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>14.9 ± 0.2</td>
<td>14.0 mínimo</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>75.7 ± 1.0</td>
<td>65-75</td>
<td>%</td>
<td>No Cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (4)</td>
<td>1.38</td>
<td>0.60-1.30</td>
<td>%</td>
<td>No Cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos.
(1') Dato calculado a partir de los datos suministrados por el cliente.
(2) Porcentaje de asfalto obtenido en el laboratorio.
(3) Resultado de la granulometría obtenida en el laboratorio.
(4) Calculado a partir de los datos suministrados por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(5) Datos del diseño de mezcla suministrados por el cliente.
Tabla N° 4: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall

Muestra: 609-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (**)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.400</td>
<td></td>
<td>63.8</td>
<td>0.3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.404</td>
<td></td>
<td>63.2</td>
<td>0.3</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.396</td>
<td></td>
<td>63.3</td>
<td>0.4</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.398</td>
<td></td>
<td>63.2</td>
<td>0.4</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>2.399</td>
<td></td>
<td></td>
<td>63.3</td>
<td>0.3</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>0.003</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio

Tabla N° 5: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall

Muestra: 609-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (**)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.6</td>
<td>1919</td>
<td>1.04</td>
<td>1996</td>
<td>29.0</td>
<td>14.7</td>
<td>77.6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1875</td>
<td>1.04</td>
<td>1950</td>
<td>27.3</td>
<td>14.6</td>
<td>78.6</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1871</td>
<td>1.04</td>
<td>1946</td>
<td>30.5</td>
<td>14.9</td>
<td>76.7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1819</td>
<td>1.04</td>
<td>1933</td>
<td>30.0</td>
<td>14.8</td>
<td>77.3</td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>1871</td>
<td>1.04</td>
<td>1946</td>
<td>29.2</td>
<td>14.7</td>
<td>77.5</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>40</td>
<td>0.00</td>
<td>42</td>
<td>1.4</td>
<td>0.1</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio
No. de informe: 1-0405-13

Tabla Nº 6: Resumen de los resultados para especímenes compactados mediante el método Marshall
Muestra: 609-13 RESUMEN

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (5)</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (1)</td>
<td>1.035</td>
<td></td>
<td>kg/m³</td>
<td></td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (1)</td>
<td>2.656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (1)</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (2)</td>
<td>5.6 ± 0.2</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>7.1 ± 0.1</td>
<td>2-8 (-2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2.399 ± 0.003</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2.481</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Vacios</td>
<td>3.3 ± 0.1</td>
<td>3-5</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>1946 ± 42</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>29.2 ± 1.4</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>63.3 ± 0.2</td>
<td>63.5±1.27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>14.7 ± 0.1</td>
<td>14.0 mínimo</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>77.5 ± 0.8</td>
<td>65-75</td>
<td>%</td>
<td>No Cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (4)</td>
<td>1.45</td>
<td>0.60-1.30</td>
<td>%</td>
<td>No Cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos.
(2) Dado calculado a partir de los datos suministrados por el cliente.
(3) Porcentaje de asfalto obtenido en el laboratorio.
(4) Resultado de la granulometría obtenida en el laboratorio.
(5) Calculado a partir de los datos suministrado por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(6) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 7: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall

Muestra: 610-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (1)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.2</td>
<td>2.364</td>
<td>64.0</td>
<td>0.5</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.367</td>
<td>63.9</td>
<td>0.3</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.363</td>
<td>64.1</td>
<td>0.6</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.361</td>
<td>63.8</td>
<td>0.4</td>
<td>4.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.364</td>
<td>64.0</td>
<td>0.4</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.003</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

(1) Porcentaje de asfalto obtenido en el laboratorio

Tabla N° 8: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall

Muestra: 610-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (1)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.2</td>
<td>1798</td>
<td>1.04</td>
<td>1870</td>
<td>28.2</td>
<td>15.8</td>
<td>69.8</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1793</td>
<td>1.04</td>
<td>1868</td>
<td>28.8</td>
<td>15.8</td>
<td>70.3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1771</td>
<td>1.04</td>
<td>1842</td>
<td>25.5</td>
<td>15.9</td>
<td>69.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1863</td>
<td>1.04</td>
<td>1956</td>
<td>27.4</td>
<td>16.0</td>
<td>69.1</td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>1811</td>
<td>1.04</td>
<td>1884</td>
<td>27.5</td>
<td>15.9</td>
<td>69.7</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td></td>
<td>50</td>
<td>0.00</td>
<td>51</td>
<td>1.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

(1) Porcentaje de asfalto obtenido en el laboratorio
Tabla N° 9: Resumen de los resultados para especímenes compactados mediante el método Marshall

Muestra: 610-13 RESUMEN

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (1)</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (1)</td>
<td>1.043</td>
<td></td>
<td>kg/m³</td>
<td></td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (2)</td>
<td>2.663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (1)</td>
<td>1.685</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (2)</td>
<td>5.2 ± 0.2</td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>5.1 ± 0.1</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2.364 ± 0.003</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2.483</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Vacios</td>
<td>4.8 ± 0.1</td>
<td>3-5</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>1884 ± 51</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>27.5 ± 1.4</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>64.0 ± 0.2</td>
<td>63.5±1.27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>15.9 ± 0.1</td>
<td>14.0 mínimo</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>69.7 ± 0.5</td>
<td>65-75</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (4)</td>
<td>1.05</td>
<td>0.60-1.30</td>
<td>%</td>
<td>Cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos
(2) Dato calculado a partir de los datos suministrados por el cliente
(2) Porcentaje de asfalto obtenido en el laboratorio
(3) Resultado de la granulometría obtenida en el laboratorio
(4) Calculado a partir de los datos suministrado por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(5) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 10: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall
Muestra: 611-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.381</td>
<td>2.380</td>
<td>2.386</td>
<td>2.379</td>
<td>53.6</td>
<td>0.3</td>
</tr>
<tr>
<td>2</td>
<td>5.6</td>
<td>2.475</td>
<td>63.3</td>
<td>0.3</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.381</td>
<td>2.386</td>
<td>2.386</td>
<td>2.379</td>
<td>63.6</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.003</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio

Tabla N° 11: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall
Muestra: 611-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1991</td>
<td>2071</td>
<td>27.0</td>
<td>15.6</td>
<td>75.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1992</td>
<td>2017</td>
<td>27.4</td>
<td>15.6</td>
<td>75.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2057</td>
<td>2139</td>
<td>31.7</td>
<td>15.5</td>
<td>76.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2021</td>
<td>2102</td>
<td>27.7</td>
<td>15.7</td>
<td>75.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promedios</td>
<td>2002</td>
<td>2082</td>
<td>28.5</td>
<td>15.6</td>
<td>75.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>50</td>
<td>52</td>
<td>2.2</td>
<td>0.1</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio
Tabla Nº 12: Resumen de los resultados para especímenes compactados mediante el método Marshall
Muestra: 611-13 RESUMEN

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (^{(5)})</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto ((15^\circ C)) (^{(1)})</td>
<td>1.043</td>
<td>kg/m(^3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (^{(3)})</td>
<td>2.663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (^{(4)})</td>
<td>1.685</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (^{(2)})</td>
<td>5.6 ± 0.2</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (^{(3)})</td>
<td>6.3 ± 0.2</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2.381 ± 0.003</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2.475</td>
<td></td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Vaciós</td>
<td>3.8 ± 1.0</td>
<td>3-5</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>2082 ± 52</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>28.5 ± 2.2</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>63.6 ± 0.2</td>
<td>63.5±1.27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>15.6 ± 0.1</td>
<td>14.0 mínimo</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>VFA</td>
<td>75.7 ± 0.6</td>
<td>65-75</td>
<td>%</td>
<td>No cumplen</td>
</tr>
<tr>
<td>Relación polvo / asfalto (^{(4)})</td>
<td>1.22</td>
<td>0.50-1.30</td>
<td>%</td>
<td>Cumple</td>
</tr>
</tbody>
</table>

\(^{(1)} \) Dato suministrado por el cliente para los cálculos volumétricos.
\(^{(1)} \) Dato calculado a partir de los datos suministrados por el cliente.
\(^{(2)} \) Porcentaje de asfalto obtenido en el laboratorio.
\(^{(3)} \) Resultado de la granulometría obtenida en el laboratorio.
\(^{(4)} \) Calculado a partir de los datos suministrados por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
\(^{(5)} \) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 13: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall

Muestra: 652-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (%)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.380</td>
<td>63.6</td>
<td>0.4</td>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.400</td>
<td>63.5</td>
<td>0.2</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.392</td>
<td>63.6</td>
<td>0.2</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.399</td>
<td>63.2</td>
<td>0.2</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td>2.394</td>
<td>63.5</td>
<td>0.2</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1°) Porcentaje de asfalto obtenido en el laboratorio

Tabla N° 14: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall

Muestra: 652-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (%)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2204</td>
<td>1.04</td>
<td>2292</td>
<td>29.4</td>
<td>15.6</td>
<td>73.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2060</td>
<td>1.04</td>
<td>2163</td>
<td>28.0</td>
<td>14.9</td>
<td>78.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2240</td>
<td>1.04</td>
<td>2329</td>
<td>26.7</td>
<td>15.1</td>
<td>76.9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2116</td>
<td>1.09</td>
<td>2306</td>
<td>29.7</td>
<td>15.0</td>
<td>77.8</td>
<td></td>
</tr>
<tr>
<td>Promedios</td>
<td>2160</td>
<td>1.05</td>
<td>2273</td>
<td>28.5</td>
<td>15.2</td>
<td>76.7</td>
<td></td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>74</td>
<td>0.03</td>
<td>75</td>
<td>1.4</td>
<td>0.3</td>
<td>1.9</td>
<td></td>
</tr>
</tbody>
</table>

(1°) Porcentaje de asfalto obtenido en el laboratorio
Tabla N° 16: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall
Muestra: 653-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM(1)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.8</td>
<td>2.409</td>
<td>2.472</td>
<td>63.1</td>
<td>0.3</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.403</td>
<td></td>
<td>62.9</td>
<td>0.5</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.407</td>
<td></td>
<td>63.0</td>
<td>0.2</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.406</td>
<td></td>
<td>62.6</td>
<td>0.2</td>
<td>2.7</td>
</tr>
<tr>
<td>0.002</td>
<td></td>
<td>2.406</td>
<td></td>
<td>62.9</td>
<td>0.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

(1) Porcentaje de asfalto obtenido en el laboratorio.

Tabla N° 17: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall
Muestra: 653-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM(1)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.8</td>
<td>2153</td>
<td>1.04</td>
<td>2239</td>
<td>27.7</td>
<td>14.6</td>
<td>82.4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2144</td>
<td>1.04</td>
<td>2230</td>
<td>27.9</td>
<td>14.8</td>
<td>81.0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2365</td>
<td>1.04</td>
<td>2460</td>
<td>31.2</td>
<td>14.6</td>
<td>81.9</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2253</td>
<td>1.04</td>
<td>2354</td>
<td>29.4</td>
<td>14.7</td>
<td>81.7</td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>2231</td>
<td>1.04</td>
<td>2320</td>
<td>29.1</td>
<td>14.7</td>
<td>81.8</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td></td>
<td>104</td>
<td>0.00</td>
<td>109</td>
<td>1.6</td>
<td>0.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

(1) Porcentaje de asfalto obtenido en el laboratorio.
No. de informe: I-0405-13

Tabla N° 18: Resumen de los resultados para especímenes compactados mediante el método Marshall
Muestra: 653-13 RESUMEN

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (5)</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (1)</td>
<td>1.035</td>
<td>-</td>
<td>kg/m³</td>
<td></td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (2)</td>
<td>2.656</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (3)</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (3)</td>
<td>5.8 ± 0.2</td>
<td>6.15</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>7.1 ± 0.2</td>
<td>2-5 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2.406 ± 0.002</td>
<td>-</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2.472</td>
<td>-</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Vacíos</td>
<td>2.7 ± 0.1</td>
<td>3-5</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>2320 ± 109</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>29.1 ± 1.6</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>62.9 ± 0.2</td>
<td>63.5±1.27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>14.7 ± 0.1</td>
<td>14.0 mínimo</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>81.8 ± 0.6</td>
<td>65-75</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (4)</td>
<td>1.38</td>
<td>0.60-1.30</td>
<td>%</td>
<td>No cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos.
(2) Dato calculado a partir de los datos suministrados por el cliente.
(3) Porcentaje de asfalto obtenido en el laboratorio.
(4) Resultado de la granulometría obtenida en el laboratorio.
(5) Calculado a partir de los datos suministrados por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(6) Datos del diseño de mezcla suministrado por el cliente.
Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del Lanamme UCR.

Revisó:
Ing. Fabián Elizondo Arrieta M.D.
Coordinador de Laboratorios de Infraestructura Vial

Aprobó:
Ing. Alejandro Sayas C. M.D.
Director Lanamme UCR
Informe de ensayo

RC-80 v.04 (Sistema de Gestión de Calidad, LanammeUCR, Norma INTE ISO/IEC 17025:2005)

Informe Final

ST-0340-13
ST-0341-13
ST-0365-13
ST-0366-13
ST-0368-13
ST-0369-13

1. Información del cliente:

Nombre: Unidad de Auditoría Técnica
Ing. Víctor Cervantes

Proyecto: Verificación de propiedades de mezcla asfáltica de planta.

2. Método de ensayo:

IT-MB-03 (AASHTO T245/ ASTM D 6927) (*). Resistencia al flujo plástico en especímenes compactados con el método Marshall.
IT-MB-04 (AASHTO T 245/ ASTM D 6926) (*). Procedimiento de mezclado y compactación mediante el método Marshall.
IT-MB-06 (AASHTO T 269/ASTM D 3203) (*). Determinación del porcentaje de vacíos de aire de mezclas bituminosas densas o abiertas compactadas.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr

3. Información de la(s) muestra(s) o especímen(es) de ensayo:

No. de identificación: 668-13

Descripción: 4 cajas, temperatura 157°C, vagoneta viaje # 3, placa: 29500, destino: Carrizal, Alajuela, Ruta: 125
No. de informe: I-0420-13

669-13 4 cajas, temperatura 161.9°C, vagoneta viaje # 1, placa: 18155,
destino: Paso ancho - Oreamuno, Ruta: 230
682-13 4 cajas, temperatura 160.9°C, vagoneta viaje # 11, placa: 151392,
destino: Manuel Antoni, Quepos, Ruta: 613
683-13 4 cajas, temperatura 159°C, vagoneta viaje # 6, placa: 137871,
destino: Carrizal, Alajuela, Ruta: 125
730-13 4 cajas, temperatura 152.5°C, vagoneta viaje #1, placa: 18155,
destino, Cerro de La Muerte Ruta 2
731-13 4 cajas, temperatura 157.9°C, vagoneta viaje #18, placa: 152442,
destino: Manuel Antonio, Quepos ruta: 613

Aportadas por:
(en orden de muestreo)
Técnicos del Laboratorio de Campo:
Sergio Castillo

Procedimiento:

La mezcla asfáltica suministrada en una caja fue cuarteada para la conformación de los especímenes de ensayo.

En el laboratorio de mezclas bituminosas se compactaron tres especímenes a las temperaturas indicadas por el cliente para cada muestra, con las siguientes cantidades de mezcla asfáltica: 1150g, 1175g y 1200g con el mazo Marshall a 75 golpes por ambas caras, que determinará cuánto se requería para obtener la altura requerida. Se cuartearon además dos especímenes de mezcla asfáltica de cada muestra para obtener la gravedad máxima teórica.

Una vez compactadas las pastillas se procedió a realizar las pruebas de gravedad específica bruta.

Así mismo, se llevó a cabo el ensayo de gravedad máxima teórica para cada una de las muestras de mezcla asfáltica, y así obtener el porcentaje de vacíos de los especímenes.

Por lo que se procedió luego a compactar los cuatro especímenes requeridos de cada muestra para a la realización del ensayo de resistencia al flujo plástico.

Para el ensayo de resistencia al flujo los especímenes fueron sometidos por 30 min en un baño a 60°C y posteriormente fallados para la obtención de la resistencia y deformación máxima.
Fecha de recepción: 2013-04-03
(en orden de muestreo) 2013-04-03
2013-04-04
2013-04-04
2013-04-05
2013-04-05

Fecha de realización del ensayo: 2013-04-03 al 2013-04-23

4. Información del muestreo:

Fecha de muestreo: 2013-04-03
(en orden de muestreo) 2013-04-03
2013-04-04
2013-04-04
2013-04-05
2013-04-05

Ubicación: Planta CONANSA, Calle Blancos
(en orden de muestreo) Planta OROSI, Lima de Cartago
Planta MECO, La Uruca
Planta CONANSA, Calle Blancos
Planta OROSI, Lima de Cartago
Planta MECO, La Uruca

Procedimiento de muestreo: Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales: Temperatura ambiente: 21,9 °C, 65% de Humedad
Temperatura ambiente: 23,8 °C, 68% de Humedad
Temperatura ambiente: 21,6 °C, 68% de Humedad
Temperatura ambiente: 22,4 °C, 69% de Humedad
Temperatura ambiente: 22,3 °C, 65% de Humedad
Temperatura ambiente: 22,6 °C, 69% de Humedad
5. Resultados:

Tabla No 1: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall

Muestra: 668-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (*)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,376</td>
<td>2,480</td>
<td>63,9</td>
<td>0,2</td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,379</td>
<td></td>
<td>64,0</td>
<td>0,2</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2,369</td>
<td></td>
<td>64,5</td>
<td>0,3</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,380</td>
<td></td>
<td>64,4</td>
<td>0,3</td>
<td>4,0</td>
<td></td>
</tr>
<tr>
<td>0,005</td>
<td></td>
<td></td>
<td>64,2</td>
<td>0,2</td>
<td>4,2</td>
<td></td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio.

Tabla No 2: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall

Muestra: 668-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (*)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,3</td>
<td>1965</td>
<td>1,04</td>
<td>2043</td>
<td>29,0</td>
<td>15,7</td>
<td>73,4</td>
</tr>
<tr>
<td>2</td>
<td>1729</td>
<td>1,04</td>
<td>1798</td>
<td>28,4</td>
<td>15,6</td>
<td>74,0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1747</td>
<td>1,04</td>
<td>1817</td>
<td>28,0</td>
<td>16,0</td>
<td>72,1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1916</td>
<td>1,04</td>
<td>1992</td>
<td>30,0</td>
<td>15,6</td>
<td>74,2</td>
<td></td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>1839</td>
<td>1,04</td>
<td>1913</td>
<td>28,9</td>
<td>15,7</td>
<td>73,4</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td></td>
<td>119</td>
<td>0,00</td>
<td>123</td>
<td>0,9</td>
<td>0,2</td>
<td>0,9</td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio.
<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (^{(1)})</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (^{(1)})</td>
<td>1,037</td>
<td>-</td>
<td>kg/m(^3)</td>
<td>-</td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (^{(1)})</td>
<td>2,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (^{(1)})</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (^{(2)})</td>
<td>5,3 ± 0,2</td>
<td>-</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (^{(3)})</td>
<td>6,2 ± 0,1</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2,376 ± 0,005</td>
<td>-</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2,480</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vaciós</td>
<td>4,2 ± 0,2</td>
<td>3-5</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>1913 ± 123</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>28,9 ± 0,9</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>64,2 ± 0,3</td>
<td>63,5 ± 1,27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>15,7 ± 0,2</td>
<td>14,0 mínimo</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>73,4 ± 0,9</td>
<td>65-75</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (^{(4)})</td>
<td>1,24</td>
<td>0,60-1,30</td>
<td>%</td>
<td>Cumple</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Dato suministrado por el cliente para los cálculos volumétricos.
\(^{(1)}\) Dato calculado a partir de los datos suministrados por el cliente.
\(^{(2)}\) Porcentaje de asfalto obtenido en el laboratorio.
\(^{(3)}\) Resultado de la granulometría obtenida en el laboratorio.
\(^{(4)}\) Calculado a partir de los datos suministrados por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
\(^{(5)}\) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 4: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall
Muestra: 669-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (1)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teorica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,4</td>
<td>2,388</td>
<td>2,511</td>
<td>62,9</td>
<td>0,4</td>
<td>4,9</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2,378</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2,386</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2,383</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,004</td>
<td></td>
<td>2,384</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Porcentaje de asfalto obtenido en el laboratorio.

Tabla N° 5: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall
Muestra: 669-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (1)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,4</td>
<td>2341</td>
<td>1,09</td>
<td>2552</td>
<td>27,0</td>
<td>12,7</td>
<td>61,5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2229</td>
<td>1,04</td>
<td>2319</td>
<td>28,4</td>
<td>13,1</td>
<td>59,9</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2183</td>
<td>1,09</td>
<td>2391</td>
<td>28,5</td>
<td>12,8</td>
<td>61,2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2114</td>
<td>1,09</td>
<td>2304</td>
<td>29,3</td>
<td>12,9</td>
<td>60,5</td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>2219</td>
<td>1,08</td>
<td>2391</td>
<td>28,3</td>
<td>12,9</td>
<td>60,7</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>94</td>
<td>0,03</td>
<td>113</td>
<td>1,0</td>
<td>0,2</td>
<td>0,8</td>
<td></td>
</tr>
</tbody>
</table>

(1) Porcentaje de asfalto obtenido en el laboratorio.
<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C)</td>
<td>1,035</td>
<td>-</td>
<td>kg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado</td>
<td>2,615</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado</td>
<td>2,936</td>
<td>%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (2)</td>
<td>4,4 ± 0,2</td>
<td>%</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>5,6 ± 0,6</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2,384 ± 0,004</td>
<td>-</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2,388</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vacios</td>
<td>5,1 ± 0,2</td>
<td>3-5</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>2391 ± 113</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>28,3 ± 1,0</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>63,3 ± 0,4</td>
<td>63,5±1,27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>12,9 ± 0,2</td>
<td>14,0 mínimo</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>60,7 ± 0,8</td>
<td>65-75</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto</td>
<td>1,66</td>
<td>0,60-1,30</td>
<td>%</td>
<td>No Cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos.
(2) Dato calculado a partir de los datos suministrados por el cliente.
(3) Porcentaje de asfalto obtenido en el laboratorio.
(4) Resultado de la granulometría obtenida en el laboratorio.
(5) Calculado a partir de los datos suministrados por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(6) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 7: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall

Muestra: 682-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (**)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,0</td>
<td>2,420</td>
<td>2,484</td>
<td>63,2</td>
<td>0,2</td>
<td>2,6</td>
</tr>
<tr>
<td>2</td>
<td>6,0</td>
<td>2,419</td>
<td></td>
<td>63,0</td>
<td>0,2</td>
<td>2,6</td>
</tr>
<tr>
<td>3</td>
<td>6,0</td>
<td>2,420</td>
<td></td>
<td>62,6</td>
<td>0,2</td>
<td>2,5</td>
</tr>
<tr>
<td>4</td>
<td>6,0</td>
<td>2,426</td>
<td></td>
<td>62,5</td>
<td>0,1</td>
<td>2,3</td>
</tr>
<tr>
<td>0,003</td>
<td></td>
<td></td>
<td></td>
<td>62,8</td>
<td>0,2</td>
<td>2,5</td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio.

Tabla N° 8: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall

Muestra: 682-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (**)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6,0</td>
<td>2107</td>
<td>1,09</td>
<td>2297</td>
<td>31,2</td>
<td>12,3</td>
<td>79,2</td>
</tr>
<tr>
<td>2</td>
<td>6,0</td>
<td>1677</td>
<td>1,09</td>
<td>1828</td>
<td>29,3</td>
<td>12,4</td>
<td>78,9</td>
</tr>
<tr>
<td>3</td>
<td>6,0</td>
<td>1849</td>
<td>1,09</td>
<td>2016</td>
<td>30,2</td>
<td>12,3</td>
<td>79,4</td>
</tr>
<tr>
<td>4</td>
<td>6,0</td>
<td>1937</td>
<td>1,09</td>
<td>2111</td>
<td>30,9</td>
<td>12,1</td>
<td>80,9</td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>1903</td>
<td>1,09</td>
<td>2053</td>
<td>30,4</td>
<td>12,3</td>
<td>79,6</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td></td>
<td>179</td>
<td>0,00</td>
<td>195</td>
<td>0,8</td>
<td>0,1</td>
<td>0,9</td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio.
Tabla N° 9: Resumen de los resultados para especímenes compactados mediante el método Marshall
Muestra: 682-13

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (5)</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (1)</td>
<td>1,043</td>
<td>-</td>
<td>kg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (2)</td>
<td>2,663</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (1)</td>
<td>1,685</td>
<td>-</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (2)</td>
<td>6,0 ± 0,3</td>
<td>-</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>6,0 ± 0,2</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2,421 ± 0,003</td>
<td>-</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2,484</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vacios</td>
<td>2,5 ± 0,1</td>
<td>3-5</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>2063 ± 195</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>30,4 ± 0,8</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>62,8 ± 0,3</td>
<td>63,5 ± 1,27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>12,3 ± 0,1</td>
<td>14,0 mínimo</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>79,6 ± 0,9</td>
<td>65-75</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (4)</td>
<td>1,43</td>
<td>0,60-1,30</td>
<td>%</td>
<td>No cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos.
(1*) Dato calculado a partir de los datos suministrados por el cliente.
(2) Porcentaje de asfalto obtenido en el laboratorio.
(3) Resultado de la granulometría obtenida en el laboratorio.
(4) Calculado a partir de los datos suministrados por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(5) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 10: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall
Muestra: 683-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PMT (**)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,371</td>
<td></td>
<td></td>
<td>64,4</td>
<td>0,4</td>
<td>4,6</td>
</tr>
<tr>
<td>2</td>
<td>2,372</td>
<td></td>
<td></td>
<td>64,2</td>
<td>0,4</td>
<td>4,6</td>
</tr>
<tr>
<td>3</td>
<td>2,370</td>
<td></td>
<td></td>
<td>64,2</td>
<td>0,3</td>
<td>4,6</td>
</tr>
<tr>
<td>4</td>
<td>2,371</td>
<td></td>
<td></td>
<td>64,2</td>
<td>0,3</td>
<td>4,7</td>
</tr>
<tr>
<td>0,001</td>
<td>0,001</td>
<td></td>
<td></td>
<td>0,1</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio.

Tabla N° 11: Resultados de Estabilidad y Flujopara especímenes compactados mediante el método Marshall
Muestra: 683-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PMT (**)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,371</td>
<td>1769</td>
<td>1,04</td>
<td>1839</td>
<td>29,0</td>
<td>15,6</td>
<td>70,9</td>
</tr>
<tr>
<td>2</td>
<td>2,372</td>
<td>1937</td>
<td>1,04</td>
<td>2015</td>
<td>28,0</td>
<td>15,6</td>
<td>70,9</td>
</tr>
<tr>
<td>3</td>
<td>2,370</td>
<td>1960</td>
<td>1,04</td>
<td>2028</td>
<td>26,9</td>
<td>15,6</td>
<td>70,7</td>
</tr>
<tr>
<td>4</td>
<td>2,371</td>
<td>1815</td>
<td>1,04</td>
<td>1886</td>
<td>31,1</td>
<td>16,9</td>
<td>70,6</td>
</tr>
<tr>
<td>Promedios</td>
<td>1868</td>
<td>1.04</td>
<td>1942</td>
<td>28,8</td>
<td>15,8</td>
<td>70,8</td>
<td></td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>90</td>
<td>0,00</td>
<td>93</td>
<td>1,8</td>
<td>0,0</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio.
<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (g)</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (1)</td>
<td>1,037</td>
<td>-</td>
<td>kg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (1)</td>
<td>2,67</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (1)</td>
<td>-</td>
<td>-</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (2)</td>
<td>5,9 ± 0,2</td>
<td>%</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>5,4 ± 0,4</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2,371 ± 0,001</td>
<td>-</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2,371</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Vacios</td>
<td>4,6 ± 0,0</td>
<td>3-5</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>1942 ± 93</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>28,8 ± 1,8</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>64,3 ± 0,1</td>
<td>63,5±1,27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>15,8 ± 0,0</td>
<td>14,0 mínimo</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>70,8 ± 0,1</td>
<td>55-75</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (4)</td>
<td>1,17</td>
<td>0,50-1,30</td>
<td>%</td>
<td>Cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos.
(1') Dato calculado a partir de los datos suministrados por el cliente.
(2) Porcentaje de asfalto obtenido en el laboratorio.
(3) Resultado de la granulometría obtenida en el laboratorio.
(4) Calculado a partir de los datos suministrado por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(5) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 13: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall
Muestra: 730-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM(1*)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.7</td>
<td>2.380</td>
<td>2.479</td>
<td>63.6</td>
<td>0.3</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2.387</td>
<td></td>
<td>63.6</td>
<td>0.3</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.381</td>
<td></td>
<td>63.6</td>
<td>0.3</td>
<td>4.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2.392</td>
<td></td>
<td>63.6</td>
<td>0.3</td>
<td>3.5</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2.385</td>
<td></td>
<td>63.6</td>
<td>0.3</td>
<td>3.8</td>
</tr>
<tr>
<td>0,006</td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio.

Tabla N° 14: Resultados de Estabilidad y Flujopara especímenes compactados mediante el método Marshall
Muestra: 730-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM(1*)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.7</td>
<td>2208</td>
<td>1.04</td>
<td>2296</td>
<td>21.0</td>
<td>14.2</td>
<td>72.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1911</td>
<td>1.04</td>
<td>1987</td>
<td>29.0</td>
<td>13.9</td>
<td>73.4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1851</td>
<td>1.04</td>
<td>1925</td>
<td>28.6</td>
<td>14.2</td>
<td>72.1</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2003</td>
<td>1.04</td>
<td>2083</td>
<td>32.7</td>
<td>13.7</td>
<td>74.6</td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>1993</td>
<td>1.04</td>
<td>2073</td>
<td>27.8</td>
<td>14.0</td>
<td>73.0</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td></td>
<td>156</td>
<td>0.00</td>
<td>162</td>
<td>4.9</td>
<td>0.2</td>
<td>1.2</td>
</tr>
</tbody>
</table>

(1*) Porcentaje de asfalto obtenido en el laboratorio.
<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (^{(5)})</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto ((15°C)) (^{(1)})</td>
<td>1,035</td>
<td>-</td>
<td>kg/m(^3)</td>
<td>-</td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (^{(2)})</td>
<td>2,615</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (^{(1)})</td>
<td>2,936</td>
<td>-</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio ((PTM)) (^{(3)})</td>
<td>5.7 ± 0.3</td>
<td>-</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (^{(3)})</td>
<td>6.3 ± 0.3</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2.385 ± 0.006</td>
<td>-</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2.479</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vacíos</td>
<td>3.8 ± 0.2</td>
<td>3-5</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>2073 ± 162</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>27.8 ± 4.9</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>63.6 ± 0.0</td>
<td>63.6±1.27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>14.0 ± 0.2</td>
<td>14.0 mínimo</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>73.0 ± 1.2</td>
<td>65-75</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (^{(4)})</td>
<td>1.426</td>
<td>0.60-1.30</td>
<td>%</td>
<td>No Cumple</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Dato suministrado por el cliente para los cálculos volumétricos.

\(^{(2)}\) Dato calculado a partir de los datos suministrados por el cliente.

\(^{(3)}\) Porcentaje de asfalto obtenido en el laboratorio.

\(^{(4)}\) Resultado de la granulometría obtenida en el laboratorio.

\(^{(4)}\) Calculado a partir de los datos suministrado por el cliente \((1)\) y los obtenidos en el laboratorio \((2)\) y \((3)\).

\(^{(5)}\) Datos del diseño de mezcla suministrado por el cliente.
Tabla N° 16: Gravedad específica bruta, gravedad máxima teórica y porcentaje de vacíos para especímenes compactados mediante el método Marshall
Muestra: 731-13 GBS

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (*)</th>
<th>Gravedad Específica bruta</th>
<th>Gravedad Específica Máxima Teórica con abs</th>
<th>Promedio Altura (mm)</th>
<th>Absorción de agua (%)</th>
<th>Porcentaje de vacíos (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,6</td>
<td>2,401</td>
<td>2,483</td>
<td>63,2</td>
<td>0,3</td>
<td>3,3</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2,407</td>
<td></td>
<td>62,7</td>
<td>0,3</td>
<td>3,1</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2,408</td>
<td></td>
<td>62,6</td>
<td>0,4</td>
<td>3,0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2,404</td>
<td></td>
<td>62,6</td>
<td>0,2</td>
<td>3,2</td>
</tr>
<tr>
<td></td>
<td>0,003</td>
<td>0,3</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio.

Tabla N° 17: Resultados de Estabilidad y Flujo para especímenes compactados mediante el método Marshall
Muestra: 731-13 GBS-FALLA

<table>
<thead>
<tr>
<th>Objetos de Ensayo</th>
<th>% Asf PTM (*)</th>
<th>Estabilidad Marshall (kgf)</th>
<th>Factor de corrección</th>
<th>Estabilidad Marshall corregida (kgf)</th>
<th>Flujo Marshall (1/100 cm)</th>
<th>VMA (%)</th>
<th>VFA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,6</td>
<td>1927</td>
<td>1,09</td>
<td>2000</td>
<td>32,0</td>
<td>12,6</td>
<td>74,0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1685</td>
<td>1,09</td>
<td>1837</td>
<td>30,4</td>
<td>12,4</td>
<td>75,3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2087</td>
<td>1,09</td>
<td>2275</td>
<td>33,5</td>
<td>12,4</td>
<td>75,7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1879</td>
<td>1,09</td>
<td>2048</td>
<td>35,0</td>
<td>12,5</td>
<td>74,7</td>
</tr>
<tr>
<td>Promedios</td>
<td></td>
<td>1895</td>
<td>1,09</td>
<td>2065</td>
<td>32,7</td>
<td>12,5</td>
<td>74,9</td>
</tr>
<tr>
<td>Desv. Est.</td>
<td>166</td>
<td>0,00</td>
<td>180</td>
<td>2,0</td>
<td>0,1</td>
<td>0,7</td>
<td></td>
</tr>
</tbody>
</table>

(*) Porcentaje de asfalto obtenido en el laboratorio.
Tabla N° 18: Resumen de los resultados para especímenes compactados mediante el método Marshall

Muestra: 731-13

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Resultados</th>
<th>Especificación según diseño (5)</th>
<th>Unidades</th>
<th>Cumplimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidad del asfalto (15°C) (1)</td>
<td>1,043</td>
<td>-</td>
<td>kg/m³</td>
<td>-</td>
</tr>
<tr>
<td>Gravedad específica bruta del agregado combinado (4)</td>
<td>2,663</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de absorción del agregado combinado (4)</td>
<td>1,685</td>
<td>-</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje de asfalto laboratorio (PTM) (2)</td>
<td>5.6 ± 0.2</td>
<td>6.15%</td>
<td>%</td>
<td>-</td>
</tr>
<tr>
<td>Porcentaje pasando la malla No. 200 (3)</td>
<td>6.0 ± 0.1</td>
<td>2-8 (±2)</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Gravedad específica bruta</td>
<td>2,405 ± 0.003</td>
<td>-</td>
<td>NA</td>
<td>-</td>
</tr>
<tr>
<td>Densidad máxima teórica</td>
<td>2,483</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vacios</td>
<td>3.1 ± 0.1</td>
<td>3-5%</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Estabilidad Marshall</td>
<td>2065 ± 180</td>
<td>800 mínimo</td>
<td>kgf</td>
<td>Cumple</td>
</tr>
<tr>
<td>Flujo Marshall</td>
<td>32.7 ± 2.0</td>
<td>20-35</td>
<td>1/100cm</td>
<td>Cumple</td>
</tr>
<tr>
<td>Promedio de altura</td>
<td>62.8 ± 0.3</td>
<td>63.5±1.27</td>
<td>mm</td>
<td>Cumple</td>
</tr>
<tr>
<td>VMA</td>
<td>12.5 ± 0.1</td>
<td>14.0 mínimo</td>
<td>%</td>
<td>No cumple</td>
</tr>
<tr>
<td>VFA</td>
<td>74.9 ± 0.7</td>
<td>65-75</td>
<td>%</td>
<td>Cumple</td>
</tr>
<tr>
<td>Relación polvo / asfalto (4)</td>
<td>1.48</td>
<td>0.80-1.30</td>
<td>%</td>
<td>No cumple</td>
</tr>
</tbody>
</table>

(1) Dato suministrado por el cliente para los cálculos volumétricos.
(1*) Dato calculado a partir de los datos suministrados por el cliente.
(2) Porcentaje de asfalto obtenido en el laboratorio.
(3) Resultado de la granulometría obtenida en el laboratorio.
(4) Calculado a partir de los datos suministrado por el cliente (1) y los obtenidos en el laboratorio (2) y (3).
(5) Datos del diseño de mezcla suministrado por el cliente.
Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.
Informe de Ensayo

1. Información del cliente
 Nombre: Unidad de Auditoria Técnica, LanammeUCR.
 Ing. Víctor Cervantes.
 Teléfono 2511-4015.
 Proyecto: Verificación de mezcla asfáltica de planta
 Domicilio: San Pedro de Montes de Oca, 400 m al norte del Centro Comercial Muñoz & Nanne,
 Laboratorio Nacional de Materiales y Modelos Estructurales (LanammeUCR).
 Universidad de Costa Rica, Finca 2.

2. Método de ensayo:
 IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
 IT-LA-14 (ASTM D 95) (**). Contenido de agua en la mezcla.
 IT-LA-33 (ASTM D 5444) (*). Granulometría del agregado.

 (*) Ensayo acreditado. Ver alcance en www.eca.or.cr
 (**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o especímen(es) de ensayo:
 No. de identificación: Descripción:
 0731-13 4 cajas, temperatura 157.9 °C, vagoneta viaje # 18 , placa: 1512442 , destino:
 Manuel Antoni, Quepos, Ruta: 613

 Aportadas por: Sergio Castillo, Técnico de campo.
 Fecha de realización del ensayo: 09 de mayo de 2013 a 13 de mayo de 2013
4. Información del muestreo

Fecha de muestreo: 05 de abril de 2013

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica MECO, La Uruca.

Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales: Temperatura ambiente: 22.6 °C
Humedad relativa: 69%

Procedimiento:

El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene del informe de ensayos I-0308-13.

5. Resultados:

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td>-</td>
<td>0.21 ± 0.04</td>
<td>%</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308 D 6307</td>
<td>0.21 ± 0.03</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308 D 6307</td>
<td>5.6 ± 0.2</td>
<td>%</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica
Ensayo de granulometría
Muestra: 0731-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>1/2 (12,5 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>93,0 ± 0,4</td>
</tr>
<tr>
<td>3/8 (9,5 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>78,2 ± 0,2</td>
</tr>
<tr>
<td>4 (4,75 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>49,4 ± 0,2</td>
</tr>
<tr>
<td>8 (2,36 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>32,0 ± 0,2</td>
</tr>
<tr>
<td>16 (1,18 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>21,7 ± 0,5</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>15,9 ± 0,2</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>11,6 ± 0,2</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>8,4 ± 0,1</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>6,0 ± 0,1</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Revisó:

Aprobó:

Ing. Fernando Acosta Aponte, MBA
Coordinador de laboratorios de Infraestructura Vial

Ing. Alejandro Navas C., MSc
Director del Laboratorio Nacional de Materiales y Modelos Estructurales

500 metros al norte de Supermercado Muñoz y Nanca, Finca #2, Universidad de Costa Rica
Código Postal 11501-2060, Universidad de Costa Rica, Costa Rica. Tel (506) 2511-5423, Fax (506) 2511-4440
E-mail: dirección.lanamme@ucr.ac.cr

Página 3 de 3
Informe de Ensayo

ST-0496-13
ST-0555-13

1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Víctor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.
3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

<table>
<thead>
<tr>
<th>No. de identificación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>0812-13</td>
<td>1 Galón con polímero. Planta Hernán Solís, Abangares.</td>
</tr>
</tbody>
</table>

Aportadas por: Sergio Castillo, Técnico de campo

Fecha de realización del ensayo: 10 de mayo de 2013 a 15 de mayo de 2013 y del 17 de mayo de 2013 al 21 de mayo de 2013

4. Información del muestreo

<table>
<thead>
<tr>
<th>Fecha de muestreo</th>
<th>Muestra</th>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0800-13</td>
<td>08 de abril de 2013</td>
</tr>
<tr>
<td></td>
<td>0801-13</td>
<td>08 de abril de 2013</td>
</tr>
<tr>
<td></td>
<td>0802-13</td>
<td>08 de abril de 2013</td>
</tr>
<tr>
<td></td>
<td>0804-13</td>
<td>08 de abril de 2013</td>
</tr>
<tr>
<td></td>
<td>0805-13</td>
<td>08 de abril de 2013</td>
</tr>
<tr>
<td></td>
<td>0806-13</td>
<td>08 de abril de 2013</td>
</tr>
<tr>
<td></td>
<td>0812-13</td>
<td>09 de abril de 2013</td>
</tr>
</tbody>
</table>

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Hernán Solís, Abangares.
Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Temperatura ambiente</th>
<th>Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800-13</td>
<td>37.6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0801-13</td>
<td>37.6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0802-13</td>
<td>37.6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0804-13</td>
<td>37.6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0805-13</td>
<td>37.6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0806-13</td>
<td>37.6 °C</td>
<td>27 %</td>
</tr>
</tbody>
</table>

Procedimiento:

El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene duplicando el diseño de mezcla en el laboratorio con el asfalto y los agregados de los diferentes apilamientos muestreados en la planta de producción.

Para replicar el diseño de mezcla se modifica el asfalto de acuerdo a lo establecido en el diseño de mezcla (2.8 % m/m base total con respecto al asfalto) y siguiendo las indicaciones del cliente: mezcla a 160 °C y tiempo de mezclado 2 horas, después de incorporado el polímero.

5. Resultados:

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td></td>
<td>0.23 ± 0.04</td>
<td>%</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308 D 6307</td>
<td>0.21 ± 0.03</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308 D 6307</td>
<td>5.6 ± 0.2</td>
<td>%</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica

Ensayo de granulometría

Muestra: 0800-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11 D 5444</td>
<td>100.0 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11 D 5444</td>
<td>100.0 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>1/2 (12.5 mm)</td>
<td>T 24/ T11 D 5444</td>
<td>93.6 ± 0.4</td>
<td>%</td>
</tr>
<tr>
<td>3/8 (9.5 mm)</td>
<td>T 24/ T11 D 5444</td>
<td>78.5 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>4 (4.75 mm)</td>
<td>T 24/ T11 D 5444</td>
<td>49.4 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>8 (2.36 mm)</td>
<td>T 24/ T11 D 5444</td>
<td>31.8 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>16 (1.18 mm)</td>
<td>T 24/ T11 D 5444</td>
<td>21.8 ± 0.1</td>
<td>%</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/ T11 D 5444</td>
<td>16.1 ± 0.1</td>
<td>%</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11 D 5444</td>
<td>11.75 ± 0.09</td>
<td>%</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11 D 5444</td>
<td>8.45 ± 0.07</td>
<td>%</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11 D 5444</td>
<td>6.11 ± 0.06</td>
<td>%</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LarammeUCR.

500 metros al norte de Supermercado Muñoz y Nanne, Finca #2, Universidad de Costa Rica
Código Postal: 11501-2060, Universidad de Costa Rica, Costa Rica. Tel. (506) 2511-5423, Fax (506) 2511-4440
e-mail: dirección.larnamme@ucr.ac.cr
Informe de Ensayo

ST-0494-13

1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Víctor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

Domicilio: San Pedro de Montes de Oca, 400 mts al norte del Centro Comercial Muñoz & Nanne, Laboratorio Nacional de Materiales y Modelos Estructurales (LanammeUCR), Universidad de Costa Rica, Finca 2.

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

No. de identificación: 0731-13

Descripción: 4 cajas, temperatura: 154,9 °C, Vagoneta viaje #1, placa: 142653, Destino: Ruta N° 2 Tres Ríos.

Aportadas por: Greivin Ceciliano, Técnico de campo

Fecha de realización del ensayo: 09 de mayo de 2013 al 17 de mayo de 2013
4. Información del muestreo

Fecha de muestreo: 05 de abril de 2013

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Orosí. La muestra de mezcla asfáltica se tomó de la Planta ubicada en Curridabat. Las muestras de material para estimar el factor de corrección se tomaron en la planta ubicada en la Lima.

Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales: Temperatura ambiente: 22,0 ºC
Humedad relativa: 61 %

Procedimiento:

El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección. El factor de corrección se obtiene del informe de ensayos I-0379-13.

5. Resultados:

Tabla N° 1: Ensayos a la mezcla asfáltica
Ensayo de contenido de asfalto mediante el horno de ignición
Muestra: M-0738-13

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td></td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>-</td>
<td>D 95</td>
<td>0.21 ± 0.04</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308</td>
<td>D 6307</td>
<td>0.73 ± 0.08</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308</td>
<td>D 6307</td>
<td>5.4 ± 0.2</td>
</tr>
</tbody>
</table>
No. de informe: I-0485-13

Tabla N° 2: Ensayos a la mezcla asfáltica
Ensayo de granulometría
Muestra: 0738-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>1/2 (12,5 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>95,6 ± 0,2</td>
</tr>
<tr>
<td>3/8 (9,5 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>84,6 ± 0,6</td>
</tr>
<tr>
<td>4 (4,75 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>47,8 ± 3</td>
</tr>
<tr>
<td>8 (2,36 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>30,5 ± 4</td>
</tr>
<tr>
<td>16 (1,18 mm)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>21,0 ± 3</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>15,6 ± 2</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>11,5 ± 1</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>8,4 ± 0,8</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/T11</td>
<td>D 5444</td>
<td>6,2 ± 0,2</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones Ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Revisó: [Firma]
Ing. Fabiana Elizondo Arrieta, MBA
Coordinador de laboratorio de Infraestructura Vial

Aprobó: [Firma]
LanammeUCR
Laboratorio NUCOR de Valencias y Modelos de Estructuras UCB

Director: [Firma]
Alejandro Navas C, M.Sc.
Director LanammeUCR
Informe de Ensayo
RC-80 v.04 (Sistema de Gestión de Calidad, LanammeUCR; Norma INTE ISO/IEC 17025:2005)

1. Información del cliente
 Nombre: Unidad de Auditoría Técnica, LanammeUCR.
 Ing. Victor Cervantes.
 Teléfono 2511-4015.
 Proyecto: Verificación de mezcla asfáltica de planta
 Domicilio: San Pedro de Montes de Oca. 400 m al norte del Centro Comercial Muñoz & Nanne.
 Laboratorio Nacional de Materiales y Modelos Estructurales (LanammeUCR).

2. Método de ensayo:
 IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
 IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
 IT-LA-33 (ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.ucr.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o especímen(es) de ensayo:
 No. de identificación: Descripción:
 San Ramón, Ruta: 742
 Aportadas por: Greivin Ceciliano
 Fecha de realización del ensayo: 07 de mayo de 2013 a 16 de mayo de 2013

500 metros al norte de Supermercado Muñoz y Nanne. Finca 2. Universidad de Costa Rica
e-mail: direcci@lanamme@ ucr.ac.cr
4. Información del muestreo

Fecha de muestreo: 08 de abril de 2013
Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica MECO, La Urca.

Procedimiento de muestreo:
Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del Lanamme UCR.

Condiciones ambientales: Temperatura ambiente: 19 ºC
Humedad relativa: 70%.

Procedimiento:
El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene del informe de ensayos I-0308-13.

5. Resultados:

<table>
<thead>
<tr>
<th>Tabla N° 1: Ensayos a la mezcla asfáltica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo</td>
</tr>
<tr>
<td>Método de ensayo</td>
</tr>
<tr>
<td>AASHTO</td>
</tr>
<tr>
<td>Contenido de agua</td>
</tr>
<tr>
<td>D 95</td>
</tr>
<tr>
<td>Factor de corrección</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
</tr>
</tbody>
</table>
Tabla No 2: Ensayos a la mezcla asfáltica
Ensayo de granulometría
Muestra: 0737-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T 111 D 5444</td>
<td>100.0 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T 111 D 5444</td>
<td>100.0 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>1/2 (12.5 mm)</td>
<td>T 24/ T 111 D 5444</td>
<td>93.6 ± 0.4</td>
<td>%</td>
</tr>
<tr>
<td>3/8 (9.5 mm)</td>
<td>T 24/ T 111 D 5444</td>
<td>78.5 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>1/4 (4.75 mm)</td>
<td>T 24/ T 111 D 5444</td>
<td>49.4 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>8 (2.36 mm)</td>
<td>T 24/ T 111 D 5444</td>
<td>31.8 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>16 (1.18 mm)</td>
<td>T 24/ T 111 D 5444</td>
<td>21.8 ± 0.1</td>
<td>%</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/ T 111 D 5444</td>
<td>16.1 ± 0.1</td>
<td>%</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T 111 D 5444</td>
<td>11.75 ± 0.09</td>
<td>%</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T 111 D 5444</td>
<td>8.45 ± 0.07</td>
<td>%</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T 111 D 5444</td>
<td>6.11 ± 0.06</td>
<td>%</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m) implica micrómetros.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del Lanamme UCR.

Revisor: [Firma]

Aprobado: [Firma]

Ing. Fabián Elizondo Arévalo, M.B.A.
Coordinador de laboratorios de Infraestructura Vial

Lanamme UCR
Director Lanamme UCR
Laboratorio Nacional de Materiales y Modelos Estructurales
Universidad de Costa Rica
500 metros al norte de Supermercado Muñoz y Nanne, Finca #2. Universidad de Costa Rica. Código Postal 11501-2060. Universidad de Costa Rica. Costa Rica. Tel (506) 2511-5423. Fax (506) 2511-4440. e-mail: direcccion@lanamme.ucr.ac.cr

Pagina 3 de 3
Informe de Ensayo

ST-0560-13

1. Información del cliente
Nombre: Unidad de Auditoria Técnica, LanammeUCR.
Ing. Victor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

2. Método de ensayo:
IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33 (ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(*** Ensayo no acreditado.

3. Información de la(s) muestra(s) o especímen(es) de ensayo:
No. de identificación: Descripción:

Aportadas por: Greivin Ceciliano. Técnico de campo.
Fecha de realización del ensayo: 20 de mayo de 2013 al 22 de mayo de 2013
4. Información del muestreo

Fecha de muestreo: 10 de abril de 2013

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Orosi. La muestra de mezcla asfáltica se tomó de la Planta ubicada en La Lima. Las muestras de material para estimar el factor de corrección se tomaron en la planta ubicada en la Lima.

Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del Lanamme UCR.

Condiciones ambientales:
- Temperatura ambiente: 22.0 °C
- Humedad relativa: 57 %

Procedimiento:

El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección. El factor de corrección se obtiene del informe de ensayos I-0370-13.

5. Resultados:

<table>
<thead>
<tr>
<th>Tabla N° 1: Ensayos a la mezcla asfáltica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra: M-0797-13</td>
</tr>
<tr>
<td>Ensayo</td>
</tr>
<tr>
<td>Metodo de ensayo</td>
</tr>
<tr>
<td>Resultados n=2</td>
</tr>
<tr>
<td>Unidades</td>
</tr>
<tr>
<td>Contenido de agua</td>
</tr>
<tr>
<td>Factor de corrección</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica

Ensayo de granulometría

Muestra: 0797-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>1/2 (12.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>94.2 ± 0.2</td>
</tr>
<tr>
<td>3/8 (9.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>83.1 ± 0.6</td>
</tr>
<tr>
<td>4 (4.75 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>48.9 ± 0.2</td>
</tr>
<tr>
<td>8 (2.36 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>31.4 ± 0.3</td>
</tr>
<tr>
<td>16 (1.18 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>21.2 ± 0.2</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>15.3 ± 0.2</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>11.3 ± 0.3</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>8.3 ± 0.3</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>6.2 ± 0.3</td>
</tr>
</tbody>
</table>

Notas: (1) Las unidades de (micro m), implican micrómetros.

Aclaraciones:
- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para las muestras indicadas en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LabanmeUCR.

Revisor: [Firma]

Ing. Fabián Elizondo Areeta, MBA.
Coordinador de laboratorios de infraestructura Vial.

Aprobó: [Firma]

Ing. Alejandro Navas C. M.Sc.
Director de la UCR

Página de 3 de 3
Informe de Ensayo

Sustituye I-0484-13

ST-0496-13
ST-0555-13

1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Víctor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.
3. Información de la(s) muestra(s) o especímen(es) de ensayo:

<table>
<thead>
<tr>
<th>No. de identificación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>0812-13</td>
<td>1 Galón con polímero. Planta Hernán Solís, Abangares.</td>
</tr>
</tbody>
</table>

Aportadas por: Sergio Castillo, Técnico de campo

Fecha de realización del ensayo: 10 de mayo de 2013 a 15 de mayo de 2013 y del 17 de mayo de 2013 al 21 de mayo de 2013

4. Información del muestreo

<table>
<thead>
<tr>
<th>Fecha de muestreo</th>
<th>Muestra</th>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 de abril de 2013</td>
<td>0800-13</td>
<td></td>
</tr>
<tr>
<td>08 de abril de 2013</td>
<td>0801-13</td>
<td></td>
</tr>
<tr>
<td>08 de abril de 2013</td>
<td>0802-13</td>
<td></td>
</tr>
<tr>
<td>08 de abril de 2013</td>
<td>0804-13</td>
<td></td>
</tr>
<tr>
<td>08 de abril de 2013</td>
<td>0805-13</td>
<td></td>
</tr>
<tr>
<td>08 de abril de 2013</td>
<td>0806-13</td>
<td></td>
</tr>
<tr>
<td>09 de abril de 2013</td>
<td>0812-13</td>
<td></td>
</tr>
</tbody>
</table>

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Hernán Solís, Abangares.
Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Temperatura ambiente</th>
<th>Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800-13</td>
<td>37,6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0801-13</td>
<td>37,6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0802-13</td>
<td>37,6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0804-13</td>
<td>37,6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0805-13</td>
<td>37,6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0806-13</td>
<td>37,6 °C</td>
<td>27 %</td>
</tr>
<tr>
<td>0812-13</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>

Procedimiento:

El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene duplicando el diseño de mezcla en el laboratorio con el asfalto y los agregados de los diferentes apilamientos muestreados en la planta de producción.

Para replicar el diseño de mezcla se modifica el asfalto de acuerdo a lo establecido en el diseño de mezcla (2,8 % m/m base total con respecto al asfalto) y siguiendo las indicaciones del cliente: mezcla a 160 °C y tiempo de mezclado 2 horas, después de incorporado el polímero.

5. Resultados:

<table>
<thead>
<tr>
<th>Tabla N° 1: Ensayos a la mezcla asfáltica</th>
<th>Ensayo de contenido de asfalto mediante el horno de ignición</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muestra: M-0800-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td>AASHTO D 95</td>
<td>0,5 ± 0,1</td>
<td>%</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308 D 6307</td>
<td>0,25 ± 0,07</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308 D 6307</td>
<td>6,3 ± 0,3</td>
<td>%</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica

Ensayo de granulometría

Muestra: 0800-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>1/2 (12,5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>94,9 ± 0,2</td>
</tr>
<tr>
<td>3/8 (9,5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>84,8 ± 0,2</td>
</tr>
<tr>
<td>4 (4,75 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>51,9 ± 0,4</td>
</tr>
<tr>
<td>8 (2,36 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>34,0 ± 0,1</td>
</tr>
<tr>
<td>16 (1,18 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>23,2 ± 0,2</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>17,3 ± 0,1</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>12,69 ± 0,09</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>9,03 ± 0,07</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>6,32 ± 0,06</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m) implica micrometros.

Aclaraciones:
- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del Lanamme UCR.

Revisión: [Firma de la revisión]

Aprobó: [Firma de aprobación]

Resenado: [Firma de resenado]

Dirección: [Dirección del laboratorio]

Fecha: [Fecha del informe]
1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Víctor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

<table>
<thead>
<tr>
<th>No. de identificación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>0803-13</td>
<td>Cajas de mezcla con polímero, temperatura: 144,7 °C. Vagoneta # 12, placa: 151285, destino: Nuevo Arenal, Ruta 142.</td>
</tr>
<tr>
<td>0807-13</td>
<td>Cajas de mezcla con polímero, temperatura: 165,0 °C. Vagoneta#2, placa: 158588, destino: Tenorio, Ruta 6.</td>
</tr>
</tbody>
</table>

Aportadas por: Sergio Castillo, Técnico de campo

500 metros al norte de Supermercado Muñoz y Nanne, Finca #2, Universidad de Costa Rica
Código Postal 11501-2060, Universidad de Costa Rica, Costa Rica. Tel (506) 2511-8423, Fax (506) 2511-4440
e-mail: direccion.lanamme@ ucr.ac.cr
4. Información del muestreo

Fecha de muestreo:

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>0803-13</td>
<td>9 de abril de 2013</td>
</tr>
<tr>
<td>0807-13</td>
<td>9 de abril de 2013</td>
</tr>
</tbody>
</table>

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Hernán Solís, Abangares.

Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales:

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Temperatura ambiente</th>
<th>Humedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0803-13</td>
<td>27.3 °C</td>
<td>68 %</td>
</tr>
<tr>
<td>0807-13</td>
<td>27.6 °C</td>
<td>71 %</td>
</tr>
</tbody>
</table>

Procedimiento:

El contenido de asfalto que se reporta en la de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene duplicando el diseño de mezcla en el laboratorio con el asfalto y los agregados de los diferentes apilamientos muestreados en la planta de producción.

El factor de corrección se obtuvo en el 1-0484-13.

5. Resultados:

Tabla No 1: Ensayos a la mezcla asfáltica

Ensayo de contenido de asfalto mediante el horno de ignición
Muestra: M-0803-13

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(AASHTO D 95)</td>
<td></td>
<td>0.43 ± 0.04</td>
<td>%</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td></td>
<td>0.25 ± 0.07</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td></td>
<td>6.9 ± 0.3</td>
<td>%</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica
Ensayo de granulometría
Muestra: 0803-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>1/2 (12,5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>96,0 ± 0,5</td>
</tr>
<tr>
<td>3/8 (9,5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>86,3 ± 0,2</td>
</tr>
<tr>
<td>4 (4,75 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>51,7 ± 0,3</td>
</tr>
<tr>
<td>8 (2,36 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>33,4 ± 0,4</td>
</tr>
<tr>
<td>16 (1,18 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>22,9 ± 0,6</td>
</tr>
<tr>
<td>30 (600 micro m) (1)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>17,1 ± 0,5</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>12,9 ± 0,4</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>9,5 ± 0,4</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>6,9 ± 0,5</td>
</tr>
</tbody>
</table>

Notas: (1) Las unidades de (micro m) implica micrómetros.

Tabla N° 3: Ensayos a la mezcla asfáltica
Ensayo de contenido de asfalto mediante el horno de ignición
Muestra: M-0807-13

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>-</td>
<td>D 95</td>
<td>0,32 ± 0,07</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308</td>
<td>D 6307</td>
<td>0,25 ± 0,07</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308</td>
<td>D 6307</td>
<td>6,8 ± 0,3</td>
</tr>
</tbody>
</table>
Tabla N° 4: Ensayos a la mezcla asfáltica
Ensayo de granulometría
Muestra: 0807-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>1/2 (12.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>96.0 ± 0.2</td>
</tr>
<tr>
<td>3/8 (9.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>85.5 ± 0.6</td>
</tr>
<tr>
<td>4 (4.75 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>52.0 ± 0.3</td>
</tr>
<tr>
<td>8 (2.36 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>33.4 ± 0.5</td>
</tr>
<tr>
<td>16 (1.18 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>22.3 ± 0.2</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>16.9 ± 0.2</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>12.39 ± 0.09</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>9.0 ± 0.1</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>6.5 ± 0.1</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros

Aclaraciones:

- El presente informe de ensayo solo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Revisó: [Firma]

Aprobó: [Firma]

500 metros al norte de Supermercado Muñoz y Nané, Finca #2, Universidad de Costa Rica
Código Postal 11501-2060, Universidad de Costa Rica, Costa Rica, Tel (506) 2511-5429, Fax (506) 2511-4440
e-mail: dirección.lanamme@ucr.ac.cr
Informe de Ensayo

ST-0598-13

1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Víctor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

Domicilio: San Pedro de Montes de Oca. 400 mts al norte del Centro Comercial Muñoz & Nanne, Laboratorio Nacional de Materiales y Modelos Estructurales (LanammeUCR), Universidad de Costa Rica, Finca 2.

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(AMST D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o especímen(es) de ensayo:

No. de identificación: 0751-13

Aportadas por: Greivin Cecíliano, Técnico de campo

Fecha de realización del ensayo: 27 de mayo de 2013 al 30 de mayo de 2013
4. Información del muestreo

Fecha de muestreo: 09 de abril de 2013

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Orosi. La muestra de mezcla asfáltica se tomó de la Planta ubicada en Curridabat. Las muestras de material para estimar el factor de corrección se tomaron en la planta ubicada en la Lima.

Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales:
- Temperatura ambiente: 19,0 °C
- Humedad relativa: 73 %

Procedimiento:

El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene del informe de ensayos I-0379-13.

5. Resultados:

Tabla N° 1: Ensayos a la mezcla asfáltica

<table>
<thead>
<tr>
<th>Muestra: M-0751-13</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td></td>
</tr>
<tr>
<td>Contenido de agua</td>
<td></td>
<td>D 95</td>
<td>0.21 ± 0.04</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308</td>
<td>D 6307</td>
<td>0.73 ± 0.08</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308</td>
<td>D 6307</td>
<td>5.4 ± 0.2</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica

Ensayo de granulometría

Muestra: 0751-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>1/2 (12,5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>93.9 ± 0.4</td>
</tr>
<tr>
<td>3/8 (9,5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>82.2 ± 0.8</td>
</tr>
<tr>
<td>4 (4,75 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>48.9 ± 0.4</td>
</tr>
<tr>
<td>8 (2,36 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>31.3 ± 0.1</td>
</tr>
<tr>
<td>16 (1,18 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>21.1 ± 0.5</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>15.3 ± 0.5</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>11.3 ± 0.3</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>8.3 ± 0.2</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>6.2 ± 0.2</td>
</tr>
</tbody>
</table>

Notas: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del Lannamme UCR.
Informe de Ensayo

ST-0638-13

1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Victor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33 (ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o especímenes de ensayo:

No. de Identificación: Descripción:
0840-13 Cajetas con mezcla asfáltica. Temperatura: 165,0°C, Vagoneta#6, placa: 126342.
Destino: Tuental Norte de Alajuela

Aportadas por: Sergio Castillo, Técnico de campo.
Fecha de realización del ensayo: 04 de junio de 2013 a 07 de junio de 2013
4. Información del muestreo

Fecha de muestreo: 17 de abril de 2013
Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Conansa, Calle Blancos

Procedimiento de muestreo:
Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales: Temperatura ambiente: 21,3 °C
Humedad relativa: 65%

Procedimiento:
El contenido de asfalto que se reporta en la Tabla Nro 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene del informe de ensayos I-0309-13.

5. Resultados:

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td>-</td>
<td>0.22 ± 0.07</td>
<td>%</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308 D 6307</td>
<td>0.26 ± 0.01</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308 D 6307</td>
<td>5.5 ± 0.2</td>
<td>%</td>
</tr>
</tbody>
</table>
Tabla No 2: Ensayos a la mezcla asfáltica

Ensayo de granulometría

Muestra: 0840-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>100.0 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>100.0 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>1/2 (12.5 mm)</td>
<td>T 24/ T11</td>
<td>93.6 ± 0.2</td>
<td>%</td>
</tr>
<tr>
<td>3/8 (9.5 mm)</td>
<td>T 24/ T11</td>
<td>84.2 ± 0.5</td>
<td>%</td>
</tr>
<tr>
<td>4 (4.75 mm)</td>
<td>T 24/ T11</td>
<td>51.8 ± 0.3</td>
<td>%</td>
</tr>
<tr>
<td>8 (2.36 mm)</td>
<td>T 24/ T11</td>
<td>33.8 ± 0.4</td>
<td>%</td>
</tr>
<tr>
<td>16 (1.18 mm)</td>
<td>T 24/ T11</td>
<td>23.3 ± 0.6</td>
<td>%</td>
</tr>
<tr>
<td>30 (600 micro m) (1)</td>
<td>T 24/ T11</td>
<td>17.0 ± 0.5</td>
<td>%</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>12.2 ± 0.4</td>
<td>%</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>8.6 ± 0.3</td>
<td>%</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>6.0 ± 0.3</td>
<td>%</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Revisado:

[Signature]

Director LanammeUCR.

Ing. Fabián Elizondo Arrieta, MBA
Coordinador de laboratorios de Infraestructura Vial

500 metros al norte de Supermercado Muñoz y Nanne, Finca #2, Universidad de Costa Rica
Código Postal: 11501-2000, Universidad de Costa Rica, Costa Rica. Tel: (506) 2511-5423, Fax (506) 2511-4440
e-mail: direccion.lanamme@ucr.ac.cr
Informe de Ensayo

1. Información del cliente

Nombre: Unidad de Auditoria Técnica, LanammeUCR.
Ing. Victor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

No. de identificación: 0883-13

Fecha de realización del ensayo: 05 de junio de 2013 al 08 de junio de 2013
4. Información del muestreo

Fecha de muestreo: 22 de abril de 2013

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Orosi. La muestra de mezcla asfáltica se tomó de la Planta ubicada en La Lima. Las muestras de material para estimar el factor de corrección se tomaron en la planta ubicada en la Lima.

Procedimiento de muestreo:

Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del Lanamme UCR.

Condiciones ambientales:
- Temperatura ambiente: 19.0°C
- Humedad relativa: 65 %

Procedimiento:

El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene del informe de ensayos L-0379-13.

5. Resultados:

Tabla N° 1: Ensayos a la mezcla asfáltica

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td>AASHTO D 95</td>
<td>0.37 = 0.04</td>
<td>%</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>ASTM D 6507</td>
<td>0.73 = 0.08</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>ASTM D 6507</td>
<td>5.6 = 0.3</td>
<td>%</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica

Ensayo de granulometría

Muestra: 0883-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>1/2 (12.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>96.5 ± 0.3</td>
</tr>
<tr>
<td>3/8 (9.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>84.8 ± 0.7</td>
</tr>
<tr>
<td>4 (4.75 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>48.2 ± 0.4</td>
</tr>
<tr>
<td>8 (2.36 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>29.9 ± 0.2</td>
</tr>
<tr>
<td>16 (1.18 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>19.7 ± 0.7</td>
</tr>
<tr>
<td>30 (600 micro m) (1)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>14.6 ± 0.1</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>11.0 ± 0.1</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>8.20 ± 0.07</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>6.27 ± 0.07</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:

- El presente informe de ensayo solo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR

Revisó:

Ing. Fabián Elizondo Arrieta, MSc.
Coordinador de laboratorios de Infraestructura Vial

Aprobó:

Ing. Alejandro Navas C., MSc.
Director LanammeUCR
Informe de Ensayo
RC-80 v.94 (Sistema de Gestión de Calidad, LanammeUCR, Norma INTE ISO/IEC 17025:2005)

1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Víctor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

Domicilio: San Pedro de Montes de Oca. 400 mts al norte del Centro Comercial Muñoz & Nanne, Laboratorio Nacional de Materiales y Modelos Estructurales (LanammeUCR), Universidad de Costa Rica, Finca 2.

2. Método de ensayo:
IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(ASTM D 5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en wwwеча.or.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

No. de identificación: 0730-13
Descripción: 4 cajas, temperatura 152.5°C, vagoneta viaje # 1, placa: 18155, destino :Cerro de la muerte, Ruta: 2
Aportadas por: Sergio Castillo, Técnico de campo
Fecha de realización del ensayo: 30 de abril de 2013 al 09 de mayo de 2013
4. Información del muestreo

Fecha de muestreo: 05 de abril de 2013

Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Oresí. La muestra de mezcla asfáltica se tomó de la Planta ubicada en Curridabat. Las muestras de material para estimar el factor de corrección se tomaron en la planta ubicada en la Lima.

Procedimiento de muestreo:
Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales:
- Temperatura ambiente: 22.3 °C
- Humedad relativa: 65%

Procedimiento:
El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.
El factor de corrección se obtiene del informe de ensayos I-0379-13.

5. Resultados:

<table>
<thead>
<tr>
<th>Tabla N° 1: Ensayos a la mezcla asfáltica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensayo de contenido de asfalto mediante el horno de ignición</td>
</tr>
<tr>
<td>Muestra: M-0730-13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td>-</td>
<td>0.21 ± 0.03</td>
<td>%</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308</td>
<td>0.73 ± 0.08</td>
<td>%</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308</td>
<td>5.7 ± 0.3</td>
<td>%</td>
</tr>
</tbody>
</table>

500 metros al norte de Supermercado Muñoz y Nanne, Finca #2, Universidad de Costa Rica
Código Postal 11501-2060, Universidad de Costa Rica, Costa Rica. Tel (506) 2511-5423, Fax (506) 2511-4440
e-mail: direccion.lanamme@ucr.ac.cr
Tabla Nº 2: Ensayos a la mezcla asfáltica
Ensayo de granulometría
Muestra: 0730-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AASHTO</td>
<td>ASTM</td>
<td>% Pasa</td>
</tr>
<tr>
<td>1 (25 mm)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>100,0 ± 0,2</td>
</tr>
<tr>
<td>1/2 (12,5 mm)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>96,5 ± 0,3</td>
</tr>
<tr>
<td>3/8 (9,5 mm)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>87,4 ± 0,2</td>
</tr>
<tr>
<td>4 (4,75 mm)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>50,5 ± 0,4</td>
</tr>
<tr>
<td>8 (2,36 mm)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>32,6 ± 0,7</td>
</tr>
<tr>
<td>16 (1,18 mm)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>22,3 ± 0,3</td>
</tr>
<tr>
<td>30 (600 micro m)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>16,4 ± 0,1</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>11,9 ± 0,1</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>8,6 ± 0,2</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T24/ T11</td>
<td>D 5444</td>
<td>6,3 ± 0,3</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:
- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.
Informe de Ensayo

RC-89 v.04 (Sistema de Gestión de Calidad, LanammeUCR. Norma INTE ISO/IEC 17025:2005)

1. Información del cliente

Nombre: Unidad de Auditoría Técnica, LanammeUCR.
Ing. Victor Cervantes.
Teléfono 2511-4015.

Proyecto: Verificación de mezcla asfáltica de planta

2. Método de ensayo:

IT-LA-08 (ASTM D 6307) (*). Contenido de asfalto por ignición.
IT-LA-14 (ASTM D 95) (*). Contenido de agua en la mezcla.
IT-LA-33(5444) (*). Granulometría del agregado.

(*) Ensayo acreditado. Ver alcance en www.eca.or.cr
(**) Ensayo no acreditado.

3. Información de la(s) muestra(s) o espécimen(es) de ensayo:

No. de identificación: 0683-13

Aportadas por: Sergio Castillo, Técnico de campo.

Fecha de realización del ensayo: 30 de abril de 2013 a 08 de mayo de 2013
4. Información del muestreo

Fecha de muestreo: 04 de abril de 2013
Ubicación: Muestras tomadas en la Planta de producción de mezcla asfáltica Conansa, Calle Blancos

Procedimiento de muestreo:
Según procedimiento IT-LC-01 v04 procedimiento para muestreo de mezcla bituminosa para pavimento. Realizado por el personal del LanammeUCR.

Condiciones ambientales: Temperatura ambiente: 22.4 ºC
Humedad relativa: 69%

Procedimiento:
El contenido de asfalto que se reporta en la Tabla N° 1 de la mezcla se obtiene restando al contenido de asfalto obtenido por el método de ignición, el contenido de agua de la mezcla y el factor de corrección.

El factor de corrección se obtiene del informe de ensayos I-0309-13.

5. Resultados:

Tabla N° 1: Ensayos a la mezcla asfáltica
Ensayo de contenido de asfalto mediante el horno de ignición
Muestra: M-0683-13

<table>
<thead>
<tr>
<th>Ensayo</th>
<th>Método de ensayo</th>
<th>Resultados n=2</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenido de agua</td>
<td>-</td>
<td>D 95</td>
<td>0.23 ± 0.04</td>
</tr>
<tr>
<td>Factor de corrección</td>
<td>T 308</td>
<td>D 6307</td>
<td>0.26 ± 0.01</td>
</tr>
<tr>
<td>Contenido de asfalto sobre la mezcla</td>
<td>T 308</td>
<td>D 6307</td>
<td>5.9 ± 0.2</td>
</tr>
</tbody>
</table>
Tabla N° 2: Ensayos a la mezcla asfáltica

Ensayo de granulometría
Muestra: 0683-13

<table>
<thead>
<tr>
<th>Malla</th>
<th>Método de ensayo</th>
<th>Resultados n=2 % Pasa</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>3/4 (19 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>100.0 ± 0.2</td>
</tr>
<tr>
<td>1/2 (12.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>91.7 ± 0.4</td>
</tr>
<tr>
<td>3/8 (9.5 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>77.9 ± 0.2</td>
</tr>
<tr>
<td>4 (4.75 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>45.7 ± 0.5</td>
</tr>
<tr>
<td>8 (2.36 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>28.9 ± 0.5</td>
</tr>
<tr>
<td>16 (1.18 mm)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>19.3 ± 0.3</td>
</tr>
<tr>
<td>30 (600 micro m) (1)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>14.0 ± 0.3</td>
</tr>
<tr>
<td>50 (300 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>10.2 ± 0.3</td>
</tr>
<tr>
<td>100 (150 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>7.4 ± 0.3</td>
</tr>
<tr>
<td>200 (75 micro m)</td>
<td>T 24/ T11</td>
<td>D 5444</td>
<td>5.4 ± 0.4</td>
</tr>
</tbody>
</table>

Nota: (1) Las unidades de (micro m), implica micrómetros.

Aclaraciones:

- El presente informe de ensayo sólo ampara las mediciones reportadas en el momento y condiciones ambientales y de uso en que se realizó esta prueba, para la(s) muestra(s) indicada(s) en este informe.
- Este informe de resultados tiene validez únicamente en su forma íntegra y original.
- No se permite la reproducción parcial de este documento sin la autorización del Director del LanammeUCR.

Revisó: [Firma]

Ing. Fabián Elizondo Arrieta, MBA
Coordinador de laboratorios de Infraestructura Vial

Aprobó: [Firma]

Ing. Alejandro Navas C. M.Sc
Director LanammeUCR

500 metros al norte de Supermercado Muñoz y Nanre, Finca #2, Universidad de Costa Rica
Código Postal 11501-2060, Universidad de Costa Rica, Costa Rica. Tel (506) 2511-5423, Fax (506) 2511-4440
e-mail: direccion.lanamme@ ucr.ac.cr