Solución a la teoría de Multicapa Elástica y software de cálculo de las respuestas del pavimento PITRA PAVE

Christopher Trejos Castillo¹, Francisco Rojas Pérez², Luis Guillermo Loria Salazar³, José Pablo Aguiar Moya⁴

¹LANAMME, Universidad de Costa Rica, Ciudad de Investigación, christopher.trejoscastillo@ucr.ac.cr
²LANAMME, Universidad de Costa Rica, Ciudad de Investigación, franciscojose.rojas@ucr.ac.cr
³LANAMME, Universidad de Costa Rica, Ciudad de Investigación, luis.loriasalazar@ucr.ac.cr
⁴LANAMME, Universidad de Costa Rica, Ciudad de Investigación, jose.aguiar@ucr.ac.cr

Resumen

La teoría de multicapa elástica es un método matemático para calcular las respuestas (deformación unitaria, esfuerzos y deflexiones) en una estructura con múltiples capas de espesor finito, exceptuando la última capa, la cual se supone con espesor y extensión infinita. Esta teoría supone que las capas son homogéneas, isotrópicas y con continuidad de esfuerzos. Basado en lo anterior, la teoría utiliza las ecuaciones diferenciales de cuarto grado de la teoría de sólidos. En este artículo se discute el método de solución propuesto, en el que se plantea el método de resolución de los sistemas de ecuaciones y las integrales que componen la teoría. Posteriormente se describe el software realizado con esta metodología llamado PITRA PAVE y se exponen comparaciones de la metodología propuesta con programas de multicapa elástica existentes, tales como 3D Move y OpenPave, los cuales son programas que utilizan la metodología de multicapa elástica, además de comparar las respuestas con las obtenidas en mediciones realizadas con el equipo de ensayo acelerado de pavimentos (Heavy Vehicle Simulator) del LanammeUcr para determinar la precisión del método y el software.

Palabras Clave: multicapa, elástica, diseño, pavimentos, software

1 Introducción

Como parte del interés por parte de los gobiernos de cada país de mejorar la infraestructura vial, se ha dado gran interés a la metodología de diseño mecanístico empírica de pavimentos flexibles.

Esta metodología permite, haciendo uso de mecánica de sólidos, averiguar las respuestas del pavimento y relacionarlas con algún tipo de deterioro del pavimento. Es por esto que una manera rápida y precisa de calcular las respuestas se vuelve de gran importancia para el desarrollo de una guía de diseño mecanístico empírico.

En este artículo se muestra la metodología de multicapa elástica tal como la expone Huang Yang [1], con las variaciones a la metodología realizadas para simplificar el cálculo, en aras de que sea más rápido a la hora de realizar el diseño. Para esto se requiere utilizar el algoritmo una gran cantidad de veces, lo cual hace que realizar el diseño del pavimento tome algunos minutos.

El método de multicapa elástica requiere del cálculo de cuatro coeficientes para cada capa mediante la resolución de varios sistemas de ecuaciones. En este artículo se muestra un método de solución de dicho sistema de ecuaciones.

2 Programación método multicapa elástica

Un método preciso para el cálculo de las respuestas en un pavimento debido a las cargas producidas por el tránsito es la teoría de multicapa elástica. Esta teoría se basa en la solución de la ecuación diferencial de compatibilidad de esfuerzos \(\nabla^4 (\phi) = 0 \), en donde \(\nabla^2 \) es el operador axial simétrico de Laplace definido en la ecuación (1).
\[\nabla^2 (\varphi) = (\frac{\delta^2}{\delta z^2} + r \frac{\delta}{\delta r} + \frac{\delta^2}{\delta r^2}) \]

Donde la función de esfuerzos \(\delta\) es una solución de la ecuación biarmónica de esfuerzos similar a las de la teoría clásica de elasticidad [1].

Las ecuaciones de equilibrio que deben cumplir los esfuerzos en el pavimento [2] se muestran en las ecuaciones (2) y (3).

\[\begin{align*}
\frac{\delta \sigma_r}{\delta r} + \frac{\delta \tau_{rz}}{\delta z} + \frac{\sigma_r - \sigma_z}{r} & = 0 \quad (2) \\
\frac{\delta \tau_{rz}}{\delta r} + \frac{\delta \sigma_z}{\delta z} + \tau_{rz} & = 0 \quad (3)
\end{align*} \]

Las ecuaciones elásticas para los esfuerzos del pavimento [3] se muestran de la ecuación (4) a la (7).

\[\begin{align*}
\sigma_z & = \frac{\delta}{\delta z} \left[(2 - \mu) \nabla^2 \varphi - \frac{\delta^2 \varphi}{\delta z^2} \right] \quad (4) \\
\sigma_r & = \frac{\delta}{\delta z} \mu \nabla^2 \varphi - \frac{\delta^2 \varphi}{\delta r^2} \quad (5) \\
\sigma_t & = \frac{\delta}{\delta z} (1 - \mu) \nabla^2 \varphi - \frac{\delta^2 \varphi}{\delta z^2} \quad (6) \\
\tau_{rz} & = \frac{\delta}{\delta r} \left[(1 - \mu) \nabla^2 \varphi - \frac{\delta^2 \varphi}{\delta z^2} \right] \quad (7)
\end{align*} \]

Las ecuaciones elásticas de desplazamiento se muestran en las ecuaciones (8) y (9).

\[\begin{align*}
w & = \frac{1 + \mu}{E} \left[(1 - 2\mu) \nabla^2 \varphi + \frac{\delta^2 \varphi}{\delta r^2} + \frac{1}{r} \frac{\delta \varphi}{\delta r} \right] \quad (8) \\
u & = -\frac{1 + \mu}{E} \left[\frac{\delta^2 \varphi}{\delta r^2} \right] \quad (9)
\end{align*} \]

Es importante recalcar que la ecuación (9), la cual fue determinada por Huang Yang, es diferente a la establecida en el trabajo original de Burmister [4] en la cual, para el desplazamiento lateral, la ecuación propuesta es la que se muestra en la ecuación (10).

\[u = \frac{1 + \mu}{E} \left[\frac{\delta^2 \varphi}{\delta r^2} \right] \quad (10) \]

Es decir, para el cálculo del desplazamiento lateral, Huang supone que debe tomarse en cuenta el diferencial de la profundidad también.

En las ecuaciones anteriores, las variables se definen así: \(z\), la profundidad (mm), \(r\), la distancia al punto de aplicación de la carga (mm), \(\mu\), razón de Poisson, \(\sigma_z\), el esfuerzo vertical (KPa), \(\sigma_r\), el esfuerzo radial (KPa), \(\sigma_t\), el esfuerzo tangencial (KPa), \(\tau_{rz}\), el esfuerzo cortante en la dirección \(rz\) (KPa), \(w\), la deflexión vertical (mm) y \(u\), la deflexión lateral (mm).

Debe recalparse que, debido al sentido de aplicación de la carga, sólo se tendrá esfuerzo cortante en la dirección \(rz\).

Al ser una ecuación diferencial de cuarto orden, la solución debe ser de la forma mostrada en la ecuación (11).

\[\Phi_i = \frac{H^2 J_0(mp)}{m^2} \left[A_i e^{-m(\lambda - \lambda_i)} - B_i e^{-m(\lambda - \lambda_i - 1)} + C_i m e^{-m(\lambda - \lambda_i - 1) - D_i m^2 e^{-m(\lambda - \lambda_i - 1)}} \right] \quad (11) \]

La ecuación anterior fue corregida con respecto a la dada en el libro Pavement Analysis and Design de Yang H. Huang, para que sea compatible dimensionalmente. Se corrigió el exponente de \(H\) y el exponente en el factor de \(J_0\).

Se tiene que \(\lambda = \frac{z}{n} + \frac{r}{m}\) donde \(z\) es la profundidad medida desde la superficie y \(r\) es la distancia al eje de simetría. \(m\) es un parámetro que debe ser calculado, \(H\) es la distancia de la superficie a la subrasante (la última capa del pavimento) y \(A, B, C\) y \(D\) son coeficientes calculados a partir de las condiciones de frontera. En la Figura 1 se puede apreciar un pavimento de "\(n\)" capas.
La función de Bessel $J_0(x)$ utilizada en la solución de la ecuación diferencial $\nabla^4 (\varphi) = 0$, se puede representar en su notación por series de Taylor tal como se muestra en la ecuación (12).

$$J_0(x) = 1 - \frac{x^2}{2} + \frac{x^4}{64} + O(x^6)$$ (12)

De la ecuación anterior, se tiene que $J_0(0) = 1$. Lo anterior es importante para el caso en que se quieren obtener las respuestas en el eje de simetría.

También se tiene que $J_1(x) = -d(J_0(x))/dx$, de donde se tiene la ecuación (13).

$$J_1(x) = \frac{d(J_0(x))}{dx} = \frac{x}{2} - \frac{x^3}{16} + \frac{x^5}{384} + O(x^6)$$ (13)

Lo anterior resulta de utilidad al calcular las respuestas al sustituir la función φ_1 en las fórmulas para el cálculo de las respuestas del pavimento, como se muestra en las ecuaciones de la (14) a la (19).

$$\sigma^*_2 = -mJ_0(mp)\left([A_i + C_i(1 + 2\mu_i - m\lambda)] e^{-m(\lambda_i - \lambda)} + [B_i + D_i(1 - 2\mu_i + m\lambda)] e^{-m(\lambda - \lambda_i - 1)} \right)$$ (14)

$$\sigma^*_1 = \left[mJ_0(mp) - \frac{J_1(mp)}{\rho} \right] \left([A_i + C_i(1 + m\lambda)] e^{-m(\lambda_i - \lambda)} + [B_i - D_i(1 - m\lambda)] e^{-m(\lambda - \lambda_i - 1)} \right)$$ (15)

$$\sigma^*_3 = \left[mJ_0(mp) \frac{J_1(mp)}{\rho} \right] \left([A_i + C_i(2\mu_i + m\lambda)] e^{-m(\lambda_i - \lambda)} - [B_i - D_i(2\mu_i - m\lambda)] e^{-m(\lambda - \lambda_i - 1)} \right)$$ (16)

$$\tau^*_{xz} = mJ_0(mp) \left([A_i + C_i(2\mu_i + m\lambda)] e^{-m(\lambda_i - \lambda)} - [B_i - D_i(2\mu_i - m\lambda)] e^{-m(\lambda - \lambda_i - 1)} \right)$$ (17)

$$\omega^*_1 = -\frac{1 + \mu_i}{E_i} J_0(mp) \left([A_i - C_i(2 - 4\mu_i - m\lambda)] e^{-m(\lambda_i - \lambda)} - [B_i + D_i(2 - 4\mu_i + m\lambda)] e^{-m(\lambda - \lambda_i - 1)} \right)$$ (18)

$$u^*_1 = \frac{1 + \mu_i}{E_i} J_0(mp) \left([A_i - C_i(1 + m\lambda)] e^{-m(\lambda_i - \lambda)} + [B_i - D_i(1 - m\lambda)] e^{-m(\lambda - \lambda_i - 1)} \right)$$ (19)

Para el cálculo de σ^*_2 y σ^*_3, cuando $r = 0$, es necesario calcular el límite de la función cuando r tiende a cero, ya que dichas funciones se indeterminan en $r = 0$. Para el cálculo, se
tiene que de dichos límites debe conocerse el hecho de que: \(\lim_{r \to 0} \frac{I_i(m\rho)}{p} = \frac{1}{2}\). Por otra parte, \((\tau_{zz})_i = 0 y (u'_{zz})_i = 0\), cuando \(r = 0\).

Las respuestas tienen un asterisco en la parte superior debido a que no son las respuestas debido al esfuerzo \(q\), sino que son las respuestas producidas por la carga puntual \(-m_{f_0}(m\rho)\), tal como se muestra en la Figura 1. Para obtener las respuestas debido a la presión de contacto \(q\), debe utilizarse la transformación de Hankel como se verá más adelante.

Las condiciones de frontera que se tienen en la superficie, es decir con \(i = 1 y \lambda = 0\) son \((\sigma'_2)_1 = -m_{f_0}(m\rho) y (\tau_{zz})_1 = 0\), de las cuales se puede obtener el sistema de ecuaciones mostrado en la ecuación (20).

\[
\begin{bmatrix}
 e^{-m\lambda_1} & 1 \\
 e^{-m\lambda_1} & -1
\end{bmatrix}
\begin{bmatrix}
 A_1 \\
 B_1
\end{bmatrix}
+ \begin{bmatrix}
 -(1 - 2\mu_1)e^{-m\lambda_1} & 1 - 2\mu_1 \\
 2\mu_1 e^{-m\lambda_1} & 2\mu_1
\end{bmatrix}
\begin{bmatrix}
 C_1 \\
 D_1
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 0
\end{bmatrix}
\]

(20)

El sistema de ecuaciones anterior puede ser simplificado como en la ecuación (21).

\[
\begin{bmatrix}
 e^{-m\lambda_1} & 1 - (1 - 2\mu_1)e^{-m\lambda_1} & 1 - 2\mu_1 \\
 e^{m\lambda_1} & -2\mu_1 e^{-m\lambda_1} & 2\mu_1
\end{bmatrix}
\begin{bmatrix}
 A_1 \\
 B_1 \\
 C_1 \\
 D_1
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 0 \\
 1 \\
 0
\end{bmatrix}
\Rightarrow \begin{bmatrix}
 X_1 \\
 \begin{bmatrix}
 A_1 \\
 B_1 \\
 C_1 \\
 D_1
\end{bmatrix}
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 0 \\
 0 \\
 0
\end{bmatrix}
\]

(21)

Al asumir que las capas están completamente ligadas, es decir que la fricción en la interfaz de las capas es de un 100%. En la interfaz entre la capa \(i-1\) e \(i\), se cumple que \(\lambda_1 = \lambda_i\) y se tienen las siguientes condiciones de frontera.

\[
(\sigma'_2)_i = (\sigma'_2)_{i+1}
\]

\[
(\tau_{zz})_i = (\tau_{zz})_{i+1}
\]

\[
(\omega')_i = (\omega')_{i+1}
\]

\[
(u')_i = (u')_{i+1}
\]

(22) (23) (24) (25)

Al evaluar las expresiones en las ecuaciones de la ecuación (22) a la ecuación (25), utilizando álgebra lineal, se obtiene el siguiente sistema de ecuaciones.

\[
\begin{bmatrix}
 1 & -(1 - 2\mu_1 - m\lambda_i) & (1 - 2\mu_1 + m\lambda_i) \\
 1 & 2\mu_1 + m\lambda_i & (2\mu_1 - m\lambda_i) \\
 1 & 1 + m\lambda_i & -(1 - m\lambda_i) \\
 1 & -(2 - 4\mu_1 - m\lambda_i) & -(2 - 4\mu_1 + m\lambda_i)
\end{bmatrix}
\begin{bmatrix}
 A_i \\
 B_i \\
 C_i \\
 D_i
\end{bmatrix}
= \begin{bmatrix}
 1 - 2\mu_1 + m\lambda_i \\
 A_i \\
 B_i \\
 C_i \\
 D_i
\end{bmatrix}
\]

\[
= \begin{bmatrix}
 R_i F_{i+1} \\
 R_i \\
 R_i \\
 R_i F_{i+1} \\
 R_i F_{i+1} \\
 R_i F_{i+1}
\end{bmatrix}
\begin{bmatrix}
 At+1 \\
 Bt+1 \\
 Ct+1 \\
 D_{i+1}
\end{bmatrix}
\]

\[
\Rightarrow \begin{bmatrix}
 M_i \\
 \begin{bmatrix}
 A_i \\
 B_i \\
 C_i \\
 D_i
\end{bmatrix}
\end{bmatrix}
= \begin{bmatrix}
 M_{i+1} \\
 \begin{bmatrix}
 A_{i+1} \\
 B_{i+1} \\
 C_{i+1} \\
 D_{i+1}
\end{bmatrix}
\end{bmatrix}
\]

(26)

Donde:

\[
R_i = \frac{E_i}{E_{i+1}} \times \frac{1 + \mu_{i+1}}{1 + \mu_i}
\]

(27)

\[
F_i = e^{-m(\lambda_i - \lambda_i - 1)}
\]

(28)

Cuando \(i = n\), se tiene que la profundidad es lo suficientemente grande con lo cual \(\lambda_n \to \infty\), y se puede suponer que los esfuerzos y las deformaciones son 0. Esto es: \((\sigma'_2)_n = (\sigma'_2)_n = (\tau_{zz})_n = 0 y (\omega')_n = (u')_n = 0\). Con esto \(e^{-m(\lambda_n - \lambda_n - 1)} \to 0 y e^{-m(\lambda_n - \lambda_n)} = 1\), lo que lleva a concluir que \(A_n = C_n = 0\), para que se cumplan las condiciones en las cuales los esfuerzos y deflexiones son iguales a 0. Sin embargo, \(B_n y D_n\) no deben ser 0, ya que el factor \(e^{-m(\lambda_n - \lambda_n - 1)} \to 0\), lo cual anula los factores que contienen a los coeficientes \(B_n y D_n\).

Por otra parte, al multiplicar por la matriz inversa de \(M_i\) en la ecuación (27), se logra obtener la relación de la ecuación (30).
\begin{align}
\begin{pmatrix}
A_i \\
B_i \\
C_i \\
D_i
\end{pmatrix} &= M_i^{-1} \cdot N_{i+1} \\
\begin{pmatrix}
A_{i+1} \\
B_{i+1} \\
C_{i+1} \\
D_{i+1}
\end{pmatrix}
\end{align}

De la ecuación (27) se puede concluir al sustituir el subíndice i por el subíndice $i - 1$ el siguiente sistema de ecuaciones.

\begin{align}
M_{i-1} \begin{pmatrix}
A_{i-1} \\
B_{i-1} \\
C_{i-1} \\
D_{i-1}
\end{pmatrix} &= N_i \\
\begin{pmatrix}
A_i \\
B_i \\
C_i \\
D_i
\end{pmatrix}
\end{align}

Se multiplica por la matriz inversa de N_i a ambos lados.

\begin{align}
N_i^{-1} M_{i-1} \\
\begin{pmatrix}
A_{i-1} \\
B_{i-1} \\
C_{i-1} \\
D_{i-1}
\end{pmatrix} &= \begin{pmatrix}
A_i \\
B_i \\
C_i \\
D_i
\end{pmatrix}
\end{align}

Se sustituye la ecuación (30) en la ecuación (32), se obtiene la ecuación (33).

\begin{align}
N_i^{-1} M_{i-1} \\
\begin{pmatrix}
A_{i-1} \\
B_{i-1} \\
C_{i-1} \\
D_{i-1}
\end{pmatrix} &= M_i^{-1} \cdot N_{i+1} \\
\begin{pmatrix}
A_{i+1} \\
B_{i+1} \\
C_{i+1} \\
D_{i+1}
\end{pmatrix}
\end{align}

Se multiplica por la matriz inversa de la matriz que está multiplicando al vector $\begin{pmatrix}
A_{i-1} \\
B_{i-1} \\
C_{i-1} \\
D_{i-1}
\end{pmatrix}$, se obtiene la ecuación (34).

\begin{align}
\begin{pmatrix}
A_{i-1} \\
B_{i-1} \\
C_{i-1} \\
D_{i-1}
\end{pmatrix} &= [N_i \cdot M_{i-1}]^{-1} [M_i^{-1} \cdot N_{i+1}] \\
\begin{pmatrix}
A_{i+1} \\
B_{i+1} \\
C_{i+1} \\
D_{i+1}
\end{pmatrix}
\end{align}

Siguiendo el proceso recursivamente y considerando que $A_n = C_n = 0$, se obtiene la igualdad.

\begin{align}
\begin{pmatrix}
A_1 \\
B_1 \\
C_1 \\
D_1
\end{pmatrix} &= M_1^{-1} \cdot N_2 \cdot M_2^{-1} \cdot N_3 \cdots \cdot M_{n-1}^{-1} \cdot N_n \\
\begin{pmatrix}
A_n \\
B_n \\
C_n \\
D_n
\end{pmatrix}
\end{align}

\begin{align}
\begin{pmatrix}
0 \\
B_n \\
0 \\
D_n
\end{pmatrix}
\end{align}

Donde la matriz X_2 representa lo siguiente.

\begin{align}
X_2 = \prod_{i=1}^{n-1} (M_i^{-1} \cdot N_{i+1})
\end{align}

De la matriz X_2 en la ecuación (27), solo se requieren las columnas 2 y 3, las cuales se representan con las entradas a_3. Además, debido a que $A_n = C_n = 0$, se obtiene la siguiente relación.

\begin{align}
\begin{pmatrix}
A_1 \\
B_1 \\
C_1 \\
D_1
\end{pmatrix} &= \begin{pmatrix}
a_{12} & a_{14} \\
a_{22} & a_{24} \\
a_{32} & a_{34} \\
a_{42} & a_{44}
\end{pmatrix} \begin{pmatrix}
B_n \\
D_n
\end{pmatrix}
\end{align}

Se multiplica la ecuación (37) por la matriz X_1, se obtiene la ecuación (38).
\[
\begin{pmatrix}
 e^{-m\lambda_1} & 1 - (1 - 2\mu_1)e^{-m\lambda_1} \\
 e^{-m\lambda_1} & -1
\end{pmatrix}
\begin{pmatrix}
 A_1 \\
 B_1
\end{pmatrix}
\begin{pmatrix}
 C_1 \\
 D_1
\end{pmatrix}

= \begin{pmatrix}
 e^{-m\lambda_1} & 1 - (1 - 2\mu_1)e^{-m\lambda_1} \\
 e^{-m\lambda_1} & -1
\end{pmatrix}
\begin{pmatrix}
 a_{12} & a_{14} \\
 a_{22} & a_{24} \\
 a_{32} & a_{34} \\
 a_{42} & a_{44}
\end{pmatrix}
\begin{pmatrix}
 B_n \\
 D_n
\end{pmatrix}
\]

Se sustituye el resultado de la ecuación (21) en la ecuación (38), se obtiene la igualdad mostrada en la ecuación (39).

\[
\begin{pmatrix}
 1 \\
 0
\end{pmatrix} = X_3 \cdot \begin{pmatrix}
 B_n \\
 D_n
\end{pmatrix}
\]

Donde la matriz \(X_3 \) se define como se muestra a continuación.

\[
X_3 = \begin{pmatrix}
 e^{-m\lambda_1} & 1 - (1 - 2\mu_1)e^{-m\lambda_1} \\
 e^{-m\lambda_1} & -1
\end{pmatrix}
\begin{pmatrix}
 a_{12} & a_{14} \\
 a_{22} & a_{24} \\
 a_{32} & a_{34} \\
 a_{42} & a_{44}
\end{pmatrix}
\]

Se multiplica la ecuación (39) por la matriz inversa de \(X_3 \), \(X_3^{-1} \), se puede obtener el valor de \(B_n \) y \(D_n \).

\[
\begin{pmatrix}
 B_n \\
 D_n
\end{pmatrix} = X_3^{-1} \cdot \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
\]

Se sustituyen los valores obtenidos en la ecuación (41) en la ecuación (37) se obtienen los valores de los coeficientes \(A_1, B_i, C_i, y D_i \).

\[
\begin{pmatrix}
 A_1 \\
 B_i \\
 C_i \\
 D_i
\end{pmatrix} = \begin{pmatrix}
 a_{12} & a_{14} \\
 a_{22} & a_{24} \\
 a_{32} & a_{34} \\
 a_{42} & a_{44}
\end{pmatrix} \cdot X_3^{-1} \cdot \begin{pmatrix}
 1 \\
 0
\end{pmatrix}
\]

Una vez se tengan los valores de los primeros coeficientes, se sustituye el subíndice \(i \) en la ecuación (34), para obtener a partir de los valores obtenidos de los coeficientes \(A_i, B_i, C_i, y D_i \), los valores de los coeficientes \(A_2, B_2, C_2, y D_2 \) como se muestra en la ecuación (43).

\[
N_i^{-1}M_{i-1} = \begin{pmatrix}
 A_1 \\
 B_1 \\
 C_1 \\
 D_1
\end{pmatrix} = \begin{pmatrix}
 A_2 \\
 B_2 \\
 C_2 \\
 D_2
\end{pmatrix} = N_{i-1}^{-1}M_{i-1} \cdot \begin{pmatrix}
 a_{12} & a_{14} \\
 a_{22} & a_{24} \\
 a_{32} & a_{34} \\
 a_{42} & a_{44}
\end{pmatrix} \cdot X_3^{-1} \cdot \begin{pmatrix}
 1 \\
 0
\end{pmatrix} = \begin{pmatrix}
 A_2 \\
 B_2 \\
 C_2 \\
 D_2
\end{pmatrix}
\]

Se debe utilizar nuevamente la relación en la (34) para continuar con el proceso recursivo y obtener todos los coeficientes \(A_i, B_i, C_i, y D_i \).

El método de resolución desarrollado en este trabajo investigativo para el sistema de ecuaciones anterior, ayuda a simplificar la utilización de recursos de la computadora, ya que para averiguar los coeficientes \(A_i, B_i, C_i, y D_i \), lo único que se necesita es realizar multiplicaciones de matrices. Esto es de suma importancia a la hora de realizar un software de multicapas elástica, debido a que la resolución del sistema de ecuaciones de \(nm \) se debe realizar una gran cantidad de veces hasta que haya convergencia en el método, como se verá más adelante.

Una vez obtenidos los valores de los coeficientes se pueden calcular las respuestas producidas por la carga puntual \(-mJ_0(mp)\), las cuales se encuentran desde la ecuación (14) hasta la ecuación (19).

Sin embargo, se buscan las respuestas debido a la carga distribuida \(q \), por lo cual se utiliza la transformación de Hankel, la cual se expresa en la siguiente ecuación.

\[
R = qa \int_0^\infty \frac{R \cdot J_1(ma)dm}{m} = qaR \int_0^\infty \frac{f_1(ma)}{m}dm
\]

Donde:

\(q \): carga distribuida (KPa)

\(m \): parámetro de iteración
R^*: Respuesta debido a la carga puntual $-m \int_0^\infty \frac{j_0(m)}{m} dm$

$\alpha = a/H$

Las diferencias entre las respuestas obtenidas con las diferentes herramientas de resolución de multicapa elástica, están en los métodos utilizados para resolver la integral de la transformación de Hankel, pues al ser una integral impropia que debe ser resuelta por integración numérica debido a que por las características de la función de Bessel, no puede encontrarse una solución de forma analítica, es decir la función no es integrable, por lo cual solo pueden obtenerse soluciones aproximadas.

El método de resolución de la integral $\int_0^\infty \frac{j_0(ma)}{m} dm$ propuesto en este trabajo es el método de los trapecios. Algunos otros softwares utilizan el método de la cuadratura de Gauss o el método Runge-Kutta, la regla de Simpson, las fórmulas de Newton-Cotes, entre otros. Para el software PITRA PAVE, con tal de tener una mayor precisión, se decidió utilizar el método de la cuadratura de Gauss.

Para evaluar la integral impropia se realiza la siguiente transformación.

$$\int_0^\infty \frac{j_0(ma)}{m} dm = \lim_{k \to \infty} \left(\lim_{b \to 0} \int_b^k \frac{j_0(ma)}{m} dm \right)$$

(45)

Para evaluar el límite anterior, se establecerá la convergencia al infinito con una tolerancia de 0,01, esto equivale a lo enunciado en la ecuación (46).

$$\int_0^\infty \frac{j_0(ma)}{m} dm = \lim_{b \to 0} \int_b^k \frac{j_0(ma)}{m} dm$$

(46)

Donde k cumple que $\lim_{b \to 0} \int_b^k \frac{j_0(ma)}{m} dm - \lim_{b \to 0} \int_b^{k-1} \frac{j_0(ma)}{m} dm < 0,01$.

El método del trapecio consiste en lo siguiente:

$$\lim_{b \to 0} \int_b^k \frac{j_0(ma)}{m} dm = \lim_{b \to 0} \left(\frac{f(b) + f(k)}{2} + \sum_{i=1}^{n-1} f \left(\frac{ik}{n} \right) \right)$$

(47)

Donde $f(x) = \frac{j_0(x)}{x}$. A continuación, se muestra la forma de la función de Bessel de orden 0 y de orden 1, lo cual ayudará a establecer la discretización necesaria para la realización del método del trapecio.

Figura 2. Función de Bessel
Como se logra apreciar en la Figura 2, la función de Bessel de orden 1 tiene la mayor área entre los valores que van de 0 a 2.404825, donde está su primer máximo; luego desde 2.404825 hasta 3.831706 en donde la función se hace 0; de 3.831706 a 5.520078 donde se da su primer mínimo y por último de 5.520078 a 7.015580, donde la función vuelve a ser 0. Con esto, el método del trapecio planteado, dando mayor importancia a los intervalos en los que la función tiene mayor área es el siguiente.

\[
\lim_{m \to 0} \frac{J_1(ma)}{m} dm = \frac{2.404825}{100} \left(\lim_{m \to 0} \frac{J_1(ma)}{2 \cdot m} + \sum_{i=1}^{99} \frac{J_1(2.404825 \alpha)}{2 \cdot 2.404825} \right) + \frac{(3.831706 - 2.404825)}{100} \frac{J_1(2.404825 \alpha)}{2 \cdot 2.404825} + \sum_{i=1}^{99} \frac{J_1((2.404825 + \frac{142699}{100}) \alpha)}{2 \cdot 2.404825 + 0.0142699} \right) + \frac{(5.520078 - 3.831706)}{100} \frac{J_1(5.520078 \alpha)}{2 \cdot 5.520078} + \sum_{i=1}^{99} \frac{J_1((3.831706 + \frac{1.6083721}{100}) \alpha)}{3.831706 + 0.016083721} \right) + \frac{(7.015580 - 5.520078)}{100} \frac{J_1(5.520078 \alpha)}{2 \cdot 5.520078} + \sum_{i=1}^{99} \frac{J_1((5.520078 + \frac{142699}{100}) \alpha)}{5.520078 + 0.0142699} \right) + \frac{(k - 7.015580)}{1000} \frac{J_1(k \alpha)}{2k} + \sum_{i=1}^{99} \frac{J_1((7.015580 + \frac{k - 7.015580}{1000}) \alpha)}{7.015580 + \frac{k - 7.015580}{1000}} \right) \quad (48)
\]

Para el cálculo de \(\lim_{m \to 0} \frac{J_1(ma)}{2 \cdot m} \), se utiliza la representación por desarrollo de Taylor de la función de Bessel de orden 1.

\[
\lim_{m \to 0} \frac{J_1(ma)}{2 \cdot m} = \frac{1}{2} \lim_{m \to 0} \left(\frac{ma}{m} - \frac{\frac{(ma)^2}{16}}{m} + \frac{(ma)^3}{384} m + O[(ma)^6] \right) = \frac{1}{2} \cdot \alpha = \alpha \quad (49)
\]

Con esto, el método para averiguar las respuestas en pavimento, consiste en lo siguiente [1]:

1. Asignar valores de \(m \), desde 0 hasta un valor en el cual se dé convergencia, es decir, que la diferencia entre dos respuestas consecutivas sea menor a una tolerancia de 0.01.

\[
R_{m+1} - R_m < 0.01 \quad (50)
\]

2. Con \(R \) calculado con la ecuación (44) de la transformación de Hankel, para calcular la respuesta debido a la carga distribuida \(q \).

3. Para cada valor de \(m \), se determinan las constantes \(A, B, C, \) y \(D \), con el método de resolución del sistema de ecuaciones \(n \times n \) planteado de la ecuación (20) a la ecuación (43).

4. Se encuentran las respuestas \(R \) producidas por la carga puntual \(-mJ_0(m)\rho\), obtenidas de la resolución de la ecuación diferencial \(\nabla^4(\theta) = 0 \), las cuales se enuncian de la ecuación (14) a la ecuación (19).

5. Se determina \(R \) con la transformación de Hankel utilizando el método numérico en la ecuación (48) o con el método numérico que se decida.

3 PITRA PAVE

La aplicación de computadora PITRA PAVE fue desarrollada por la Unidad de Materiales y Pavimentos del Programa de Infraestructura del Transporte (PITRA) del LanammeUCR, en el cual se cuenta con un laboratorio de ensayos a escala real (PaveLab) utilizado para validar la solución propuesta. La portada del software se muestra en la Figura 3. El lenguaje de programación utilizado en la elaboración de la aplicación es Java.

La herramienta está diseñada para averiguar las respuestas de un pavimento (esfuerzos, deformaciones unitarias y deflexiones) en cualquier posición para una estructura multicapa, que
se supone infinita en la dirección lateral, homogénea e isotrópica; lo anterior basándose en la teoría de multicapa elástica, cuya solución ha sido explicada en este artículo.

![Imagen de ventana inicial Pitra Pave](image.jpg)

Figura 3. Ventana inicial Pitra Pave

4 Comparación con datos en campo y herramientas similares

Para comparar los resultados obtenidos con la herramienta Pitra Pave, se utilizó el programa OpenPave, desarrollado por Jeremy Lea, PhD de la Universidad de California en Davis y el programa 3D Move, desarrollado en la Universidad de Nevada en Reno.

La estructura utilizada para la revisión es la estructura siendo ensayada en el laboratorio de ensayos a escala real con el simulador acelerado de vehículos pesados (HVS, Heavy Vehicle Simulator) del LananmeUCR [5]. Esta estructura cuenta con las propiedades mostradas en la Tabla 1. Cabe mencionar que esta estructura será utilizada en el proyecto Sifón - La Abundancia, el cual está siendo desarrollado en la zona norte de Costa Rica.

<table>
<thead>
<tr>
<th>Capas</th>
<th>Módulo (MPa)</th>
<th>Razón de Poisson</th>
<th>Espesor (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpeta asfáltica</td>
<td>5685</td>
<td>0.35</td>
<td>0.13</td>
</tr>
<tr>
<td>Base Granular</td>
<td>500</td>
<td>0.40</td>
<td>0.25</td>
</tr>
<tr>
<td>Subbase</td>
<td>200</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>Subrasante</td>
<td>40</td>
<td>0.45</td>
<td>semi infinita</td>
</tr>
</tbody>
</table>

Se ensayó la mitad de un eje simple dual de 80 KN, con una separación entre centro y centro de las llantas de 33 cm, con una presión de inflado de 689 KPa. Se evalúan las respuestas en 10 puntos, a la mitad de cada capa, en la fibra inferior de la carpeta asfáltica y en la parte superior de la subrasante, evaluando en cada caso la posición bajo la llanta y en medio de las dos llantas.

Se muestra la comparación en cada una de las posiciones de la deflexión vertical, la deformación unitaria tangencial en la dirección del tránsito y la deformación unitaria vertical. Se muestra la comparación de estas variables, pues son necesarias para el diseño de pavimentos con un enfoque mecánístico empírico. La comparación de la deflexión vertical se muestra en la Tabla 2, la comparación de la deformación unitaria tangencial se encuentra en el Tabla 3 y la comparación de la deformación unitaria vertical se puede observar en la Tabla 4.
El ID 1 y 2 representan la posición a la mitad de la carpeta asfáltica, el ID 3 y 4 representan la profundidad en la fibra inferior de la carpeta asfáltica, el ID 5 y 6 están en la profundidad media de la base granular, el ID 7 y 8 representan la posición media de la subbase y los ID 9 y 10 representan la parte superior de la subrasante. En todos los casos el primer ID representa la posición bajo la llanta y el segundo ID representa el caso en medio de las dos llantas. Los signos negativos representan tensión y el signo positivo significa compresión.

Puede verificarse que los porcentajes de error al comparar PITRA PAVE con respecto a los valores obtenidos con OpenPave y 3D Move son muy bajos y en las posiciones de interés para el diseño mecanístico empírico de pavimentos, estos errores fueron aún menores.

Tabla 2. Comparación de la deflexión vertical en metros

<table>
<thead>
<tr>
<th>ID</th>
<th>PITRA PAVE</th>
<th>OpenPave</th>
<th>3D Move</th>
<th>Diferencia PITRA PAVE/OpenPave</th>
<th>Diferencia PITRA PAVE/3D Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.25E-04</td>
<td>4.15E-04</td>
<td>4.11E-04</td>
<td>2.31%</td>
<td>3.47%</td>
</tr>
<tr>
<td>2</td>
<td>4.35E-04</td>
<td>4.18E-04</td>
<td>4.15E-04</td>
<td>4.24%</td>
<td>5.05%</td>
</tr>
<tr>
<td>3</td>
<td>4.20E-04</td>
<td>4.10E-04</td>
<td>4.03E-04</td>
<td>2.34%</td>
<td>4.12%</td>
</tr>
<tr>
<td>4</td>
<td>4.33E-04</td>
<td>4.16E-04</td>
<td>4.15E-04</td>
<td>4.25%</td>
<td>4.46%</td>
</tr>
<tr>
<td>5</td>
<td>3.96E-04</td>
<td>3.80E-04</td>
<td>3.81E-04</td>
<td>2.51%</td>
<td>4.09%</td>
</tr>
<tr>
<td>6</td>
<td>4.14E-04</td>
<td>3.96E-04</td>
<td>3.89E-04</td>
<td>4.51%</td>
<td>6.24%</td>
</tr>
<tr>
<td>7</td>
<td>3.55E-04</td>
<td>3.44E-04</td>
<td>3.41E-04</td>
<td>3.03%</td>
<td>3.95%</td>
</tr>
<tr>
<td>8</td>
<td>3.70E-04</td>
<td>3.50E-04</td>
<td>3.47E-04</td>
<td>5.05%</td>
<td>6.54%</td>
</tr>
<tr>
<td>9</td>
<td>3.34E-04</td>
<td>3.23E-04</td>
<td>3.21E-04</td>
<td>3.44%</td>
<td>4.11%</td>
</tr>
<tr>
<td>10</td>
<td>3.48E-04</td>
<td>3.28E-04</td>
<td>3.25E-04</td>
<td>6.28%</td>
<td>7.00%</td>
</tr>
</tbody>
</table>

Tabla 3. Comparación de la deformación unitaria tangencial

<table>
<thead>
<tr>
<th>ID</th>
<th>PITRA PAVE</th>
<th>OpenPave</th>
<th>3D Move</th>
<th>Diferencia PITRA PAVE/OpenPave</th>
<th>Diferencia PITRA PAVE/3D Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-9.28E-06</td>
<td>-8.91E-06</td>
<td>-9.79E-06</td>
<td>4.15%</td>
<td>5.15%</td>
</tr>
<tr>
<td>2</td>
<td>9.04E-07</td>
<td>1.61E-06</td>
<td>7.35E-07</td>
<td>43.78%</td>
<td>22.98%</td>
</tr>
<tr>
<td>3</td>
<td>-1.12E-04</td>
<td>-1.12E-04</td>
<td>-1.12E-04</td>
<td>0.06%</td>
<td>0.09%</td>
</tr>
<tr>
<td>4</td>
<td>-1.03E-04</td>
<td>-1.03E-04</td>
<td>-1.03E-04</td>
<td>0.12%</td>
<td>0.03%</td>
</tr>
<tr>
<td>5</td>
<td>-8.46E-05</td>
<td>-8.56E-05</td>
<td>-8.46E-05</td>
<td>1.15%</td>
<td>0.03%</td>
</tr>
<tr>
<td>6</td>
<td>-8.86E-05</td>
<td>-9.04E-05</td>
<td>-8.94E-05</td>
<td>2.06%</td>
<td>0.92%</td>
</tr>
<tr>
<td>7</td>
<td>-8.46E-05</td>
<td>-8.74E-05</td>
<td>-8.38E-05</td>
<td>3.26%</td>
<td>0.92%</td>
</tr>
<tr>
<td>8</td>
<td>-8.55E-05</td>
<td>-9.09E-05</td>
<td>-8.73E-05</td>
<td>5.96%</td>
<td>2.06%</td>
</tr>
<tr>
<td>9</td>
<td>-1.03E-04</td>
<td>-1.07E-04</td>
<td>-1.02E-04</td>
<td>3.52%</td>
<td>1.24%</td>
</tr>
<tr>
<td>10</td>
<td>-1.03E-04</td>
<td>-1.10E-04</td>
<td>-1.05E-04</td>
<td>6.47%</td>
<td>2.02%</td>
</tr>
</tbody>
</table>
Tabla 4. Comparación de la deformación unitaria vertical

<table>
<thead>
<tr>
<th>ID</th>
<th>PITRA PAVE</th>
<th>OpenPave</th>
<th>3D Move</th>
<th>Diferencia PITRA PAVE/OpenPave</th>
<th>Diferencia PITRA PAVE/3D Move</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.91E-05</td>
<td>5.87E-05</td>
<td>5.97E-05</td>
<td>0.68%</td>
<td>1.02%</td>
</tr>
<tr>
<td>2</td>
<td>-9.67E-06</td>
<td>-1.04E-05</td>
<td>-9.39E-06</td>
<td>7.25%</td>
<td>3.05%</td>
</tr>
<tr>
<td>3</td>
<td>1.17E-04</td>
<td>1.17E-04</td>
<td>1.17E-04</td>
<td>0.07%</td>
<td>0.24%</td>
</tr>
<tr>
<td>4</td>
<td>6.80E-05</td>
<td>6.81E-05</td>
<td>6.80E-05</td>
<td>0.20%</td>
<td>0.07%</td>
</tr>
<tr>
<td>5</td>
<td>1.51E-04</td>
<td>1.52E-04</td>
<td>1.51E-04</td>
<td>0.90%</td>
<td>0.05%</td>
</tr>
<tr>
<td>6</td>
<td>1.51E-04</td>
<td>1.53E-04</td>
<td>1.52E-04</td>
<td>1.70%</td>
<td>0.63%</td>
</tr>
<tr>
<td>7</td>
<td>1.39E-04</td>
<td>1.43E-04</td>
<td>1.38E-04</td>
<td>2.77%</td>
<td>0.80%</td>
</tr>
<tr>
<td>8</td>
<td>1.45E-04</td>
<td>1.53E-04</td>
<td>1.48E-04</td>
<td>4.93%</td>
<td>1.70%</td>
</tr>
<tr>
<td>9</td>
<td>2.16E-04</td>
<td>2.23E-04</td>
<td>2.14E-04</td>
<td>2.88%</td>
<td>1.03%</td>
</tr>
<tr>
<td>10</td>
<td>2.23E-04</td>
<td>2.36E-04</td>
<td>2.27E-04</td>
<td>5.23%</td>
<td>1.66%</td>
</tr>
</tbody>
</table>

También se realizó la comparación de la deflexión obtenida con la herramienta PITRA PAVE con respecto al valor medido con la viga Benkelman colocada en medio de las dos llantas del dispositivo de carga del HVS, tal como se muestra en la Figura 4. La viga tiene como limitación que no posee una alta precisión en la medición, además de que al cargar el pavimento, este acumula deformación por sus propiedades viscoelásticas, las cuales son limitaciones de la comparación.

Figura 4. Ensayo con viga Benkelman y HVS

Los resultados de la comparación de la deflexión en la superficie medida y estimada se muestran en la Tabla 5. Los resultados tienen un porcentaje de error pequeño tomando en consideración las limitaciones del equipo de medición.

Tabla 5. Comparación de la deflexión en la superficie medida y estimada

<table>
<thead>
<tr>
<th>Deformación medida superficie (mm)</th>
<th>Deformación PITRA PAVE</th>
<th>Diferencia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,67383</td>
<td>0,43054</td>
<td>36,11%</td>
</tr>
<tr>
<td>0,5664</td>
<td>0,63552</td>
<td>12,20%</td>
</tr>
<tr>
<td>1,03516</td>
<td>0,80657</td>
<td>22,08%</td>
</tr>
</tbody>
</table>
5 Referencias